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1. Introduction 

The Integrated Water Flow Model (IWFM) is a fully documented FORTRAN-

based computerized mathematical model that simulates ground water flow, stream flow, 

and surface water – ground water interactions. IWFM was developed by staff at the 

California Department of Water Resources (DWR).  IWFM is GNU licensed software, 

and all the source codes, executables, documentation, and training material, are freely 

available on DWR’s website.  The model was first released to the public by DWR in 

2003 as IGSM2 (Integrated Groundwater-Surface water Model version 2).  IGSM2 itself 

was a completely revised version, in theory and code, of IGSM which was originally 

developed in 1990 for a group of State and local agencies in California (including DWR).  

This document reviews in detail the principles, theories, and assumptions that form the 

engine for IWFM. 

 

1.1.  Overview of IWFM Theoretical Documentation 

Chapter 1 of this document reviews the history of IWFM, and briefly explains the 

model features. 

In Chapter 2, the conservation equations that are used to model the hydrological 

processes simulated in IWFM are detailed.  The hydrological processes that are simulated 

in IWFM are the groundwater heads in a multi-layer aquifer system, stream flows, lakes 

(open water bodies), direct runoff of precipitation, return flow from irrigation water, 

infiltration, evapotranspiration, vertical moisture movement in the root zone and the 
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unsaturated zone that lies between the root zone and the saturated groundwater system.  

The interaction between the aquifer, streams and lakes as well as land subsidence, tile 

drainage, subsurface irrigation and the runoff from small watersheds adjacent to model 

domain are also modeled by IWFM.  Mathematical models that are used for each of the 

above processes are developed and discussed thoroughly in this chapter.   

Chapter 3 details the numerical methods used in IWFM to solve the differential 

equations that model the hydrological processes listed in Chapter 2 and the interactions 

between them.  The methods used to store large matrices in a computer-memory efficient 

way is also described in this chapter.  Finally, techniques that are used to calculate 

parameter values at finite element nodes based on values measured only at a few 

locations are discussed. 

In Chapter 4, the demand, simulation of water supply and water allocation process 

are discussed.  This chapter is integral to understanding one of the main objectives of the 

model; simulating water supply for the purpose of meeting a demand.  Explanation of the 

land use approach in the model, and allocation of water based on land use needs are 

included in this chapter.  The methods used to adjust water supply in order to meet the 

demand are also discussed. 

 

1.2. History of IWFM Development 

IWFM was first released by DWR to the public as IGSM2 in December 2002.  In 

September 2005 the name IGSM2 was changed to IWFM to avoid confusion with 

another model IGSM (same acronym but a different code and theoretical basis); versions 
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of IGSM are still in use today.  Additional details can be found in Appendix B.  IGSM2 

Version 1.0 was made available to the public in December 2002.  IGSM2 Version 1.01 

which included minor corrections was released shortly after, in January 2003.  IGSM2 

Version 2.0 and Version 2.01 were released in December 2003 and March 2004, 

respectively.  Version 2.0 incorporated more robust solution techniques, new features and 

improved output files, whereas Version 2.01 included minor corrections.  Later, IGSM2 

Version 2.2 which included a new zone budgeting post-processor was released in 

February 2005.  IGSM2 Version 2.3, which was renamed as IWFM Version 2.3, was 

released in September 2005 and included minor additional features and modified output 

files compared to IGSM2 Version 2.2.  IWFM Version 2.4 that included a modified 

methodology for routing soil moisture in the root zone was released in May 2006.  IWFM 

Version 3.0 mostly included structural changes in the source code that was the start of an 

effort to move to an object-oriented programming paradigm.  Time-tracking simulations, 

option to print groundwater heads and subsidence values in a Tecplot-compliant format to 

create animation, and new features in the simulation of the root zone soil moisture were 

part of this version.  IWFM Version 3.0 was released in February 2007. 

 

1.3. Summary of Current Model Features in IWFM 

IWFM is a water resources management and planning model that simulates 

groundwater, surface water, groundwater-surface water interaction, as well as other 

components of the hydrologic system (Figure 1.1).  Preserving the non-linear aspects of  
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Figure 1.1  Hydrologic processes modeled in IWFM 
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the surface and subsurface flow processes and the interactions among them is an 

important aspect of the current version of IWFM. 

Simulation of groundwater elevations in a multi-layer aquifer system and the 

flows among the aquifer layers lies in the core of IWFM.  Galerkin finite element method 

is used to solve the conservation equation for the multi-layer aquifer system.  Stream 

flows and lake storages are also modeled in IWFM.  Their interaction with the aquifer 

system is simulated by solving the conservation equations for groundwater, streams and 

lakes simultaneously.   

An important aspect of IWFM that differentiates it from the other models in its 

class is its capability to simulate the water demand as a function of different land use and 

crop types, and compare it to the historical or projected amount of water supply.  The 

user can specify stream diversion and pumping locations for the source of water supply.  

User-specified diversion and pumping amounts can be distributed over the modeled area 

for agricultural irrigation or urban municipal and industrial use.  Based on the 

precipitation and irrigation rates, and the distribution of land use and crop types over the 

model domain, the infiltration, evapotranspiration and surface runoff can be computed.  

Vertical movement of the soil moisture through the root zone and the unsaturated zone 

that lies between the root zone and the saturated groundwater system can be simulated, 

and the recharge rates to the groundwater can be computed. 

As mentioned, IWFM has the capability to compare the agricultural and urban 

water demands to the actual water supply (in terms of stream diversions and pumping) 

that is available in the modeled region from a historical or a projected point-of-view.  If 

there is discrepancy between the water demand and the water supply (i.e. if there is a 
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supply shortage or a supply surplus), IWFM can be used to adjust the water supplies 

automatically to minimize this discrepancy.  The user can choose to have only diversions, 

only pumping amounts or both diversions and pumping adjusted to minimize the 

difference between the computed demand and the water supply. 

IWFM allows the user to divide the entire model area into smaller sub-regions.  

This division can be based on hydrologic and geologic properties (e.g. individual 

watersheds) or on the management practices (e.g. water districts).  The division of the 

model into smaller regions does not affect the mass distribution over the entire regions; 

the sub-regions are used solely for the grouping and reporting of the simulation results.  

Most of the input data required by IWFM is independent of particular sub-regions.  

However, due to data inadequacy that is faced in most applications some data is required 

to be input on a sub-regional basis.  The details about the specific data requirements for 

IWFM are listed in the User’s Manual that accompanies this document. 

This documentation represents the theory and methodology applied to IWFM 

Version 3.02.  Figure 1.2 is a general flowchart of the current version of IWFM.  As new 

versions come online, revisions and additions will be made to this documentation.   
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Figure 1.2  General flowchart of IWFM (continued on next page) 
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Figure 1.2  General flowchart of IWFM (continued) 
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Figure 1.2  General flowchart of IWFM (continued) 
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2. Hydrological Processes Modeled in IWFM 

In the core of IWFM lies the simulation of regional groundwater heads.  In natural 

hydrological systems the regional groundwater interacts with other components of the 

hydrologic cycle.  As precipitation falls on the ground surface, it infiltrates into the soil at 

a rate that is dictated by the soil type, ground cover and soil moisture.  The moisture in 

the top soil moves downward as well as it is taken out of the soil by vegetation.  The 

downward-moving soil moisture travels through the unsaturated zone of the soil before it 

replenishes the groundwater.   

If the infiltration capacity of the soil is less than the precipitation rate, the portion 

of the precipitation that is in excess of infiltration becomes surface runoff and contributes 

to streams and large bodies of water such as lakes.  In wet periods, streams act as water 

sources for the aquifer system whereas in dry periods they drain water away from the 

aquifer.  Similarly, large bodies of water, such as lakes, affect the groundwater heads 

during wet and dry periods.  IWFM models groundwater heads, stream flows and lake 

storage simultaneously as well as other components of the hydrological cycle discussed 

above in order to simulate the interactions between these hydrological components 

accurately.   

In this chapter, the hydrological processes that are simulated in IWFM and the 

theoretical background of the simulation methods along with the accompanying 

simplifications and assumptions are detailed.  The equations used to simulate the 

interactions among each of these hydrological components are also explained. 



 2-2

2.1. Groundwater Flow 

IWFM can simulate horizontal and vertical groundwater flow in any multi-layer 

aquifer system that includes a combination of confined, unconfined and leaky layers.  

These layers may be separated by aquitards or aquicludes (Figure 2.1).  Table 2.1 gives a 

definition for each of these aquifer types.  IWFM is also capable of simulating the change 

 

Figure 2.1  Multi-layer aquifer system 
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in the aquifer layer types (for instance, a confined aquifer becoming unconfined) as the 

groundwater head levels fluctuate.  The three-dimensional nature of the flow is simulated 

by a quasi three-dimensional approach.  In this modeling approach, the depth-integrated 

groundwater flow equation is solved for each aquifer layer in order to compute the two-

dimensional groundwater head field.  Vertical flow to and from each layer is computed 

through approximated leakage terms that are treated as individual head dependent sources 

or sinks. 

The equation for the conservation of mass at a cross-section of an aquifer layer is 

given as 

Layer Type Layer Description

Confined aquifer Aquifer bound above and below 
by impervious surfaces

Unconfined aquifer Aquifer with a free water surface as 
the upper boundary

Leaky aquifer Aquifer losing/gaining water through an 
aquitard that bounds the aquifer above/below

Aquiclude Formation that may contain water, but unable 
to transmit significant quantities

Aquitard Semi-pervious/leaky formation

             Table 2.1  Types of aquifer layers and their descriptions
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(2.1)

 

where 

Ss = storativity, (dimensionless).  It is equal to the storage coefficient 

So, for a confined aquifer and specific yield, Sy, for an unconfined 

aquifer; 

h = groundwater head, (L); 

q  = specific discharge field, (L2/T); 

qu = rate of flow into the aquifer layer from the upper adjacent layer, 

(L/T); 

Iu = indicator function for top aquifer layer, (dimensionless); 

= 

1  if layer is not top aquifer layer

0  if layer is top aquifer layer

⎧
⎪
⎨
⎪
⎩

; 

qd = rate of flow into the aquifer layer from the lower adjacent layer, 

(L/T); 

Id = indicator function for bottom aquifer layer, (dimensionless); 

= 

1  if layer is not bottom aquifer layer

0  if layer is bottom aquifer layer

⎧
⎪
⎨
⎪
⎩

; 
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δ = dirac delta function, (dimensionless); 

xs = x-coordinate of a stream location, (L); 

ys = y-coordinate of a stream location, (L); 

Qsint = stream-groundwater interaction (see the discussion on stream 

flows), (L3/T); 

As = effective area of the stream through which stream-groundwater 

interaction occurs, (L2); 

xlk = x-coordinate of a lake location, (L); 

ylk = y-coordinate of a lake location, (L); 

Qlkint = lake-groundwater (see the discussion on lakes), (L3/T); 

Alk = effective area through which lake-groundwater interaction occurs, 

(L2); 

xtd = x-coordinate of a tile drain or subsurface irrigation system, (L); 

ytd = y-coordinate of a tile drain or subsurface irrigation system, (L); 

Qtd = tile drain outflow from or subsurface irrigation inflow into the 

groundwater system, (L3/T); 

Atd = effective area through which tile drain outflow or subsurface 

irrigation inflow is occurring, (L2); 

qo = other sources/sinks such as pumping, recharge, subsurface inflow 

from adjacent small watersheds, etc., (L/T); 

qsd = rate of flow into storage due to the compaction of interbeds, (L/T); 

∇  = del operator, (1/L); 

x = horizontal x-coordinate, (L); 
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y = horizontal y-coordinate, (L); 

t = time, (T). 

The value of Ss for a confined aquifer is different than its value for an unconfined 

aquifer.  To model the changing aquifer conditions (e.g. a confined aquifer becoming 

unconfined), Ss is kept in the time-differential term in equation (2.1). Using Darcy’s 

equation, one can express the specific discharge in terms of the groundwater head as 

q T h= − ∇  (2.2) 

where 

T = transmissivity, (L2/T) = 

( )ab

Kb for confined aquifer

K h z for unconfined aquifer

⎧
⎪
⎨
⎪ −⎩

 

K = saturated hydraulic conductivity of the aquifer material, (L/T); 

b = thickness of the confined aquifer layer, (L); 

h = groundwater head at the unconfined aquifer, (L); 

zab = elevation of the bottom of the unconfined aquifer layer, (L). 

In order to define the rate of flow into the aquifer layer from adjacent upper and 

lower layers, two cases have been considered: (i) adjacent aquifer layers are separated by 

an aquitard, and (ii) there is not an aquitard separating the adjacent aquifer layers.  

 

2.1.1. Aquifer Layers Separated by an Aquitard 

For this case, consider Figure 2.2 where a system of an aquifer layer, the adjacent 

upper layer and the aquitard separating these two layers is depicted.  Bear and Verruijt 
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(1987) define an aquitard as a geohydrologic layer whose permeability is at least one 

order of magnitude smaller than that of the adjacent aquifer layers.  Assuming that the 

aquitard is saturated throughout its thickness, the flow in the aquitard is essentially 

vertical and its storage is negligible, the vertical flow can be expressed as (Bear, 1972) 

'
u

u u'
u

K
q h L h

b
= − Δ = − Δ  (2.3) 

where  

 = vertical hydraulic conductivity of the aquitard between the aquifer 

layer and the upper adjacent layer, (L/T); 

 = thickness of the aquitard between the aquifer layer and the upper 

adjacent layer, (L); 

hΔ  = head difference between the top and the bottom of the aquitard, 

(L); 

'
uK

'
ub

 

Figure 2.2  Schematic representation of two aquifer layers separated by 
an aquitard 

'
ub '

uK

datum 

z b 
zt 

upper adjacent aquifer layer 

aquifer layer 
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Lu = leakage coefficient between the aquifer layer and the upper 

adjacent layer, (1/T).  

Therefore, from equation (2.3), the leakage coefficient, Lu, is expressed as 

 (2.4) 

The head difference, Δh, between the top and the bottom of the aquitard depends 

on the hydraulic head in the aquifer layer and the upper adjacent aquifer layer (Figure 

2.2).  It can be written as 

u b u t

b u b u t

t b u t

b u t

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

− ≥ >⎧
⎪ − < >⎪Δ = ⎨ − ≥ =⎪
⎪ < =⎩

 (2.5) 

where  

h = groundwater head at the aquifer in consideration, (L); 

hu = groundwater head at the upper adjacent aquifer, (L); 

zb = bottom elevation of the aquitard, (L); 

zt = top elevation of the aquitard, (L). 

Similarly, the flow rate into the aquifer layer from a lower adjacent aquifer that is 

separated by an aquitard can be expressed as 

d dq L h= − Δ  (2.6) 

where 

Ld = leakage coefficient between the aquifer layer and the lower 

adjacent layer, (1/T); 

'
u

u '
u

K
L

b
=
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Δh = head difference between the top and the bottom of the aquitard that 

separates the aquifer and the lower adjacent aquifer, (L). 

The leakage coefficient and head difference in equation (2.6) is given, 

respectively, as 

'
d

d '
d

K
L

b
=   (2.7) 

d t d b

t d t d b

t t d b

t d b

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

− ≥ ≥⎧
⎪ − = ≥⎪Δ = ⎨ − ≥ <⎪
⎪ = <⎩

 (2.8) 

where  

 = vertical hydraulic conductivity of the aquitard between the aquifer 

layer and the lower adjacent layer, (L/T); 

 = thickness of the aquitard between the aquifer layer and the lower 

adjacent layer, (L); 

h = groundwater head at the aquifer layer in consideration, (L); 

hd = groundwater head at the lower adjacent aquifer layer, (L). 

Note that, in equation (2.8), zt and zb represent the top and bottom elevations of 

the semi-confining layer that underlies the aquifer layer in consideration.  

 

2.1.2. Aquifer Layers that are not Separated by an Aquitard 

For the second case where two adjacent aquifer layers have vertical hydraulic 

conductivities that have the same order of magnitudes with no aquitard separating them, 

'
dK

'
db
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consider Figure 2.3.  Due to the continuity of the vertical flow at the interface between 

two layers, one can write 

u
u 1 2 u

u

K K
q h h L h

b 2 b 2
= − Δ = − Δ = − Δ  (2.9) 

and  

1 2h h hΔ = Δ + Δ  (2.10) 

where 

Ku = vertical hydraulic conductivity of the upper adjacent aquifer layer, 

(L/T); 

bu = thickness of the upper adjacent aquifer layer, (L); 

K = vertical hydraulic conductivity of the aquifer layer in 

consideration, (L/T); 

b = thickness of the aquifer layer in consideration, (L); 

h = groundwater head at the aquifer layer in consideration, (L); 

 

Figure 2.3 Schematic representation of two aquifer layers that are not 
separated with an aquitard 

Δh1 

Δh2 

b 

bu Ku 

K 

bu/2

b/2 

datum 

zk
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hu = groundwater head at the upper adjacent aquifer layer, (L); 

Lu = leakage coefficient between the aquifer layer and upper adjacent 

aquifer layer, (1/T); 

Δh = head difference between the aquifer layer and the upper adjacent 

aquifer layer, (L). 

Substituting equation (2.9) into (2.10) for Δh1 and Δh2 and solving for the leakage 

coefficient, Lu, one obtains the harmonic mean of the leakage coefficients of the aquifer 

layer in consideration and the upper adjacent aquifer layer: 

u
u

u

1
L

b b
0.5

K K

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (2.11) 

Also, the head difference between two aquifer layers can be expressed similar to 

equation (2.5) as 

u k u k

k u k u k

k k u k

k u k

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

− ≥ >⎧
⎪ − < >⎪Δ = ⎨ − ≥ =⎪
⎪ < =⎩

 (2.12) 

where  

zk = elevation of the interface between the adjacent aquifer layers, (L). 

A similar expression can be obtained for the leakage coefficient and the head 

difference between the aquifer layer and the lower adjacent aquifer layer when they are 

not separated by an aquitard as 

d
d

d

1
L

b b
0.5

K K

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (2.13) 
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d k d k

k d k d k

k k d k

k d k

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

− ≥ ≥⎧
⎪ − = ≥⎪Δ = ⎨ − ≥ <⎪
⎪ = <⎩

 (2.14) 

After substituting equations (2.2), (2.3) and (2.6) into (2.1) and rearranging, one 

obtains the groundwater flow equation that is used in IWFM: 

( )

( )

( )

( )

u ds
u u d d o sd

sint
s s

s

lkint
lk lk

lk

td
td td

td

S h
0 T h I L h I L h q q

t
Q

x x , y y
A

Q
x x , y y

A

Q
x x , y y

A

∂
= −∇ ∇ + Δ + Δ − +

∂

−δ − −

−δ − −

−δ − −

 

(2.15)

 

where the terms Δhu and Δhd are introduced in order to differentiate between the head 

difference between the aquifer and the upper adjacent layer, and the head difference 

between the aquifer and the lower adjacent layer, respectively.  Based on the stratigraphic 

characteristics of the aquifer system, equations (2.4) and (2.7) are used for leakage 

coefficients when adjacent aquifer layers are separated by an aquitard.  Equations (2.11) 

and (2.13) are used when adjacent layers are not separated by an aquitard. 

Equation (2.15) is a partial differential equation that models unsteady 

groundwater flow in a multi-layer aquifer system that consists of confined and/or 

unconfined layers.  These layers may be separated by semi-confining layers.  Equation 

(2.15) is non-linear if the aquifer layer is unconfined and linear if it is confined.  Equation 

(2.15) also takes into account the effect of aquifer interaction with streams and lakes, and 

the effect of tile drainage and subsurface irrigation on the groundwater heads. 
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To define a well-posed problem, equation (2.15) should be coupled with initial 

and boundary conditions for each aquifer layer.  The boundary conditions that can be 

defined in IWFM are (i) specified flux (Neumann), (ii) specified head (Dirichlet), (iii) 

rating table (groundwater head versus flux) and (iv) general head boundary conditions. 

 

2.2. Tile Drainage and Subsurface Irrigation 

Tile drainage is often used in farm lands in order to increase the groundwater 

drainage where the natural drainage of the soil is not fast enough to maintain desired 

agricultural conditions.  Tile drains are located beneath the surface of the soil.  The term 

tile drain is used since they are in the form of clayware pipes, which are made from clay 

tiles (Smedema and Rycroft, 1983).  Tile drains are used for the drainage of water applied 

to agricultural lands for the following reasons: (i) they do not interfere with farming 

operations since their location is beneath the surface, and (ii) there is no loss of farming 

area due to the drainage system (Smedema and Rycroft, 1983; Luthin, 1973).  Figure 2.4 

shows a schematic representation of a tile drain. 

IWFM can also simulate the effect of subsurface irrigation on the groundwater 

heads.  Figure 2.5 illustrates subsurface irrigation, where the direction of flow is from the 

irrigation pipes to the groundwater.  Subsurface irrigation is beneficial for deep rooted 

crops and trees in arid areas to avoid excessive evaporation. 

Simulations of tile drains and subsurface irrigation are similar except that for tile 

drains flow direction is always from groundwater to tile drain, whereas for subsurface 

irrigation system the direction is always from the irrigation pipe towards the 
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groundwater.  The difference of the groundwater head and tile drain elevation (or head at 

the subsurface irrigation pipe) is multiplied by a conductance term to approximate the 

flow between groundwater and tile drain (or subsurface irrigation pipe): 

( )td td tdQ C z h= −  (2.16) 

where 

Qtd = flow between groundwater and tile drain or subsurface irrigation 

pipe, (L3/T); 

Ctd = conductance of the interface material between the tile 

drain/subsurface irrigation pipe and the aquifer material, (L2/T); 

ztd = elevation of the tile drain or the head at the subsurface irrigation 

pipe, (L); 

h = groundwater head at the location of tile drain or subsurface 

irrigation pipe, (L). 

 

datum 

water table tile drain 

ztd 
h 

Figure 2.4  Schematic representation of a tile drain 

ground surface
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The flow term, Qtd, is negative in modeling tile drains and positive in modeling 

subsurface irrigation.   

The conductance term, Ctd, can be expressed as 

td
td td

td

K
C A

d
=  (2.17) 

where  

Ktd = hydraulic conductivity of the interface material between the tile 

drain/subsurface irrigation pipe and aquifer material, (L/T); 

dtd = thickness of the interface material, (L); 

Atd = effective area through which tile drain outflow or subsurface 

irrigation inflow is occurring, (L2). 

 

datum 

water table 

ztd 

h 

Figure 2.5  Flow from a subsurface irrigation pipe to the groundwater 

ground surface 

Sub-irrigation pipe 
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If dependable field measurements are available, they may be used to calculate the 

conductance, Ctd.  In many cases, however, a conductance value must be chosen 

somewhat arbitrarily and adjusted during model calibration. 

 

2.3. Land Subsidence 

IWFM accounts for changes in storage due to land subsidence. The change in soil 

structure, which causes subsidence, primarily occurs from pumping large amounts of 

groundwater in a given area.  Modeling land subsidence is an important feature of IWFM 

since storage changes impact the available water supply. 

The change in storage can be temporary or permanent, depending upon the 

amount of stress placed on the soils.  A temporary change in storage means that the soils 

were not permanently displaced and the elasticity of the soil is preserved.  Given the 

compaction is elastic, the soil may still expand.  Extraction of large amounts of water 

from the aquifer may increase the effective stress of the soils beyond a threshold value, 

causing permanent displacement of soils and a permanent decrease in the storage capacity 

of the aquifer.   

IWFM calculates the groundwater head changes due to subsidence in relation to 

the vertical compaction of interbeds.  Interbeds are lenses that have poor permeability 

within a relatively permeable aquifer.  The following three items are used as criteria 

when defining an interbed (Leake and Prudic, 1988): 

• The hydraulic conductivity of the interbed is significantly lower than the 

hydraulic conductivity of the aquifer material. 
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• The lateral extent of the interbed must be small enough so that it is not 

considered a confining bed that separates adjacent aquifers. 

• The interbed thickness must be small in comparison to its lateral extent. 

Land subsidence is a function of the change in the effective stress, elastic and 

inelastic specific storages of the interbed, and the initial interbed thickness, given that the 

geostatic and the hydrostatic pressures over the interbed are constant.  The elastic change 

in the interbed thickness can be written as (Riley, 1969; Helm, 1975) 

'

se se o
w

p
b S b

Δ
Δ =

γ
 (2.18) 

where 

Δbse = elastic change in interbed thickness, positive for compaction and 

negative for expansion, (L); 

'pΔ  = change in effective stress, positive for increase and negative for 

decrease, (F/L2); 

γw = unit weight of water, (F/L3); 

Sse = elastic specific storage, (1/L); 

bo = the initial thickness of the interbed, (L). 

For an interbed located in an aquifer where geostatic pressure is constant, the 

change in effective stress as a function of the change in head can be expressed as (Poland 

and Davis, 1969) 

'
wp hΔ = −γ Δ  (2.19) 

where 
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Δh = change in head; positive for increase and negative for decrease in 

head, (L). 

Substituting (2.19) into (2.18), one can express the change in interbed thickness in 

terms of change in the head as 

se se ob hS bΔ = −Δ  (2.20) 

Similarly, inelastic change in the interbed thickness can be approximately related 

to the change in head at an aquifer where geostatic pressure is constant as (Leake and 

Prudic, 1988) 

si si ob hS bΔ = −Δ  (2.21) 

where 

Δbsi = inelastic change in interbed thickness, positive for compaction and 

negative for expansion, (L); 

Ssi = inelastic specific storage, (1/L). 

The total compaction, i.e. elastic and inelastic compaction, can be computed by 

adding the elastic and inelastic compactions computed by equations (2.20) and (2.21). 

Equations (2.20) and (2.21) require that the geostatic pressure in the aquifer is 

constant.  Geostatic pressure is constant in confined aquifers but it changes in an 

unconfined aquifer as the water table fluctuates.  In IWFM it is assumed that the change 

in geostatic pressure is negligible in unconfined aquifers so that equations (2.20) and 

(2.21) can be used for modeling the land subsidence in unconfined as well as confined 

aquifers.  Normally, the compaction is less for an unconfined aquifer compared to the 

compaction in a confined aquifer.  By using the assumption that equations (2.20) and 
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(2.21) are applicable to unconfined aquifers, the actual compaction in unconfined 

aquifers is slightly overestimated in IWFM. 

 

2.3.1. Flow into Groundwater Storage due to Land Subsidence 

The groundwater flow equation used in IWFM is given in equation (2.15).  The 

first term on the right hand side of equation (2.15) represents the flow rate into 

groundwater storage due to fluctuating head values.  To incorporate the flow into storage 

due to interbed compaction, an additional term, qsd, has been included in equation (2.15).  

This additional term can be expressed as (Leake and Prudic, 1988) 

'
sd s

h
q S

t

∂
=

∂
 (2.22) 

where 

qsd = rate of flow into or out of storage due to compaction or expansion 

of interbeds, (L/T); 

'
sS  = skeletal storativity of interbeds, (dimensionless). 

The skeletal storativity value in (2.22) varies between the elastic and inelastic 

specific storage values multiplied by the interbed thickness, bo, depending on the relation 

of the head to the pre-consolidation head.  If the head is above the pre-consolidation 

head, '
sS  takes the value of elastic specific storage multiplied by the interbed thickness 

and if the head falls below the pre-consolidation head, it takes the value of inelastic 

specific storage multiplied by the interbed thickness: 
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se o c
'
s

si o c

S b if  h h

S

S b if  h h

>⎧
⎪= ⎨
⎪ ≤⎩

 (2.23) 

where  

hc = pre-consolidation head.   

The pre-consolidation head value is also adjusted during the simulation period.  It 

is assigned the most recent lowest head value if the head falls below the pre-compaction 

head.  Equations (2.15) and (2.22) reveal that when the rate of change of groundwater 

head is positive (i.e. increasing groundwater head) flow out of the storage will occur due 

to expansion of the interbeds.  If the rate of change of head is negative (i.e. decreasing 

groundwater head) flow into the groundwater storage will occur due to the compaction of 

the interbeds.  If the head falls below the pre-consolidation head, hc, the compaction is 

irreversible.  If the head stays above the pre-consolidation then the interbeds will expand 

again upon recharge of the aquifer. 

 

2.4. Initial and Boundary Conditions 

The solution of the groundwater flow equation (2.15) requires specification of 

boundary and initial conditions, which constrain the problem and make solutions unique.  

Initial and boundary conditions are not only necessary in solving the groundwater 

equation, but the accuracy is important as well.  If inconsistent or incomplete boundary 

conditions are specified, the problem is ill defined (Wang and Anderson, 1982).   
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2.4.1. Initial Conditions 

The solution of equation (2.15) requires the knowledge of groundwater head 

values at the beginning of the simulation period.  Therefore, ( )h x, y, t 0=  needs to be 

specified for all aquifer layers by the user. 

 

2.4.2. Specified Flux (Neumann) 

A Neumann boundary condition is applied when the flow is known across 

surfaces bounding the domain.  Given a specified flux boundary, the flux normal to the 

boundary is prescribed for all the points of the boundary as a function of location and 

time: 

( )h
q T f x, y, t

nΓ
∂

= − =
∂

 (2.24) 

where 

qΓ  = specified flux at the boundary, (L2/T); 

T = transmissivity, (L2/T); 

h = groundwater head at the boundary, (L); 

n = distance that is measured perpendicular and outward to the 

boundary, (L); 

f(x,y,t) = known function for all points on the part of the boundary where 

flux is specified, (L2/T). 
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This type of boundary condition typically occurs in an aquifer adjacent to 

bedrock, where there is no flux.  Aquifers adjacent to another source of water with fixed 

flux into or out of the aquifer system also involve this type of boundary condition. 

 

2.4.3. Specified Head (Dirichlet) 

A Dirichlet boundary condition is set when the hydraulic head is known for 

surfaces bounding the flow domain.  This type of boundary condition assumes a constant 

head value for the designated points of the boundary.  For instance, a specified head 

boundary may occur when the flow domain is adjacent to an open body of water.  At 

every point on this type of boundary, the piezometric head is the same as the head in the 

aquifer at the point adjacent to it.  In groundwater flow, this occurs at the interface 

between a saturated porous medium and a river, lake or sea (Bear, 1972). 

 

2.4.4. Rating Table  

The rating table flow boundary condition is a specific type of specified flux 

boundary condition.  Based on a flow rate versus hydraulic head rating table, the 

boundary flow may change as a function of the hydraulic head: 

( )h
q T f h

nΓ
∂

= − =
∂

 (2.25) 

An example of this boundary condition is where a canal with a known cross-

section lies along the boundary of the domain.  The rate of flux at the boundary can be 

determined as a function of the canal cross-section and the stage of the canal. 
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2.4.5. General Head 

The general head boundary condition is applied when the head value is known at 

a distance from the boundary nodes.  The known head value is usually at a body of water 

located at a given distance from the boundary nodes.  It can also come from a subsurface 

source, such as the groundwater head at a nearby groundwater basin.  The general head 

boundary inflow at a finite element node can be expressed as 

( )GHB GHB
K A

Q h h
d
Γ Γ

Γ
Γ

= −  (2.26) 

where 

QGHB = general head boundary flow, (L3/T); 

KΓ = hydraulic conductivity of the aquifer at the boundary, (L/T); 

AΓ = cross-sectional area at the boundary that flow passes through, (L2); 

dΓ = distance between the boundary and the location of the known head, 

(L); 

hΓ = head value at the boundary, (L); 

hGHB = head at the nearby surface water body or aquifer, (L). 

 

2.5. Stream Flows 

Streams are an important component of the hydrological cycle.  During the 

periods when groundwater heads are low, they contribute water to the groundwater and 

during periods when the groundwater heads are high, they drain water away (Figure 2.6).  
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Figure 2.6  Stream-groundwater interaction scenarios 
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In regions where agricultural and urban development is high, they are also used as a 

source of water supply.  A portion of the water that is diverted from the streams and used 

to meet agricultural and urban water demands seeps into the groundwater at locations far 

from streams.  This further complicates the stream-groundwater system. 

IWFM incorporates a stream routing package that simulates the stream flows as a 

function of flow from the upstream tributaries and reaches, surface runoff, agricultural 

and urban return flow, diversions and bypasses, flow from upstream lakes and the 

exchange of water between the stream and the groundwater.  The stream system is 

divided into segments that are termed stream reaches.  Each reach consists of multiple 

stream nodes.  Each stream node represents a section of the stream reach which is termed 

as stream segment.  Stream flows are simulated at each stream node.  An example of the 

representation of a natural stream system by stream nodes and stream segments is 

depicted in Figure 2.7.  In Figure 2.7.c, stream segments that are represented by stream 

nodes are shown between two consecutive dashed lines.  It should be noted that at a 

confluence there are as many nodes as the number of stream reaches meeting at the 

confluence.  Even though stream nodes at a confluence are located at the same 

coordinates, the stream segments that they represent are different (Figure 2.7.c).  

In simulating the stream flows, IWFM uses the continuity equation, where storage 

at stream node i is assumed to be zero: 

in out0 Q Q= −  (2.27) 

and 

in s f r ws brs td lko hj
j

Q Q R S Q Q Q Q Q= + + + + + + +∑  (2.28) 
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(b) Representation of the stream system with stream nodes 

(c) Stream segments associated with each node 
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Figure 2.7  Representation of a natural stream system by stream nodes 
and stream segments in IWFM
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out bdiv sint si
Q Q Q Q= + +  (2.29) 

bdiv b divQ Q Q= +  (2.30) 

where 

s j
Q  = flow from upstream node j, (L3/T); 

Rf = surface water return flow from agricultural irrigation and urban 

water use, (L3/T); 

Sr = direct runoff due to rainfall excess and subsurface flow that seeps 

onto the ground surface, (L3/T); 

Qws = inflow from the tributaries to the stream node (see small stream 

boundary conditions), (L3/T); 

Qbrs = inflow from bypasses, (L3/T); 

Qtd = inflow from tile drains, (L3/T); 

Qlko = inflow due to lake overflow (see the discussion on lakes for the 

computation of this term), (L3/T); 

Qh = inflows other than those listed above, (L3/T); 

Qb = outflow that is diverted as bypass flow, (L3/T); 

Qdiv = flow that is diverted for agricultural and urban water use, (L3/T); 

Qsint  = rate of water exchange between the stream and the groundwater, 

(L3/T); 

si
Q  = net flow at stream node i that contributes to the flow at the 

downstream node, (L3/T). 
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The number of stream nodes that are considered in the summation term on the 

right hand side of equation (2.28) depends on the location of the stream node i (Figure 

2.7).  If node i is in the middle of a stream reach, there will be only one upstream node 

from which flow will be contributing to the flow at node i.  On the other hand, if node i is 

located at a confluence, then there will be as many upstream nodes as the number of 

upstream reaches meeting at the confluence.  As an example, consider node 3 of reach 1 

in Figure 2.7.c.  Writing equation (2.28) for node 3, only node 2 will appear as upstream 

node.  On the other hand, writing equation (2.28) for node 10, nodes 4 and 9 will appear 

as the upstream nodes. 

Substituting equation (2.29) into equation (2.27) and rearranging, one obtains 

s in bdiv s inti
Q Q Q Q 0− + + =  (2.31) 

In IWFM, stream flows are related to stream surface elevations through a rating 

curve: 

( )s s si i i
Q Q h=  (2.32) 

where 

si
h  = elevation of the stream surface at stream node i with respect to a 

common datum, (L). 

 

2.5.1. Diversions and Bypass Flows 

In general, diversion rates and bypass flows that occur at a stream node are pre-

specified values.  In certain occasions bypass flows can also be specified through a rating 
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curve that renders them as a function of the stream flow.  If there is enough flow at the 

stream node so that the total of the diversion and bypass flows can be taken out of the 

stream, the pre-specified values remain unchanged.  If the stream flow is not enough for 

the required diversion and bypass flows, it is necessary to compute how much of the 

specified flows can actually be taken out of the stream.  To achieve this, it is assumed 

that diversions occur before the bypass flows.  After the diversion flows are taken out of 

the stream flow, bypass flows are allowed to be taken out of the stream.  As such, 

defining the required diversion and bypass flow rates as Qdivreq and Qbreq, respectively, 

one can compute the actual diversion and bypass flow rates that take place at stream node 

i as 

divreq in divreq

div

in in divreq

Q   if  Q Q

Q

Q        if  Q Q

≥⎧
⎪

= ⎨
⎪ <⎩

 (2.33) 

*
breq s breqi

b
* *
s s breqi i

Q   if  Q Q

Q

Q      if  Q Q

⎧ ≥
⎪⎪= ⎨
⎪

<⎪⎩

 (2.34) 

where 

*
s in divi

Q Q Q= −  (2.35) 

and Qin is given by equation (2.28).  Equations (2.33)-(2.35) reveal that diversions and 

bypasses are assumed to take place before the stream-groundwater interaction which is 

detailed in the following section. 
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2.5.2. Stream-Groundwater Interaction 

The stream-groundwater interaction is included in IWFM to capture its effect on 

stream flows and groundwater heads.  The exchange of water between the stream and the 

groundwater along a stream segment can be modeled approximately as (McDonald and 

Harbaugh, 1988) 

( ) ( )sint s s b bi i
Q C max h ,h max h,h  ⎡ ⎤= −⎣ ⎦  (2.36) 

where 

sintQ  = stream-groundwater interaction, (L3/T); 

si
C  = conductance of the streambed material at stream node i, (L2/T); 

si
h  = stream surface elevation, (L); 

h = groundwater head at stream node i, (L); 

bh  = elevation of the stream bottom at node i, (L); 

The conductance of the stream bed material that appear in (2.36) can be expressed 

as 

s si i
s i i si i

s si i

K K
C L W A

d d
= =  (2.37) 

where 

si
K  = hydraulic conductivity of the stream bed material, (L/T); 

si
d  = thickness of the stream bed material, (L); 

Li = length of the stream segment represented by stream node i, (L); 

Wi = wetted perimeter, (L); 
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si
A  = effective area of the stream segment represented by node i through 

which stream-groundwater interaction occurs, (L2). 

It should be noted that Qsint and si
A  that appear in equations (2.36) and (2.37) are 

the same terms that appear in the groundwater conservation equation (2.15).  Stream flow 

equation (2.31) is coupled with groundwater conservation equation (2.15) through the 

stream-groundwater interaction term, Qsint.  In order to compute groundwater heads, 

stream flows and stream-groundwater interaction properly, it is necessary to solve 

equations (2.15) and (2.31), simultaneously.  The solution methodology used in IWFM 

will be discussed in detail later in this document. 

 

2.6. Lakes 

Lakes and similar large water bodies are as important in the hydrological cycle as 

the groundwater and streams.  Lakes interact with groundwater and streams, and can 

affect the groundwater heads and stream flows drastically.  For this reason, the capability 

of modeling lake storage and its interaction with groundwater and streams has been 

included in IWFM.  Figure 2.8 shows some of the hydrological components modeled in 

IWFM that affect the lake storage. 

The conservation equation for lake storage can be expressed as 

( )
Nlk

lk
lk lk lk lk lkint brlk inlk lkoi i i i i

i 1

S
P A EV A Q Q Q Q 0

t
=

∂
− − − − − + =

∂ ∑  (2.38) 

where 
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Figure 2.8  Hydrological components that affect lake storage 
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Slk = lake storage, (L3); 

i = lake node that represents an area of lake, (dimensionless); 

Nlk = total number of lake nodes that represent the entire lake area, 

(dimensionless); 

lki
P  = precipitation onto the lake area represented by node i, (L/T); 

lki
EV  = evaporation from the lake area represented by node i, (L/T); 

ilkintQ  = lake-groundwater interaction, (L3/T); 

lki
A  = lake area represented by node i, (L2); 

Qbrlk = inflow from diversion and bypass flows, (L3/T); 

Qinlk = inflow from upstream lakes, (L3/T); 

Qlko = outflow from lake in case lake surface elevation exceeds a pre-

specified maximum elevation, (L3/T); 

t = time, (T). 

As can be seen in equation (2.38), diversion and bypass flows can be set as inflow 

to the lake.  At a lake node i, evaporation rate is pre-specified as a function of time.  

Furthermore, lake storage is related to the lake surface elevation through a rating table: 

( )lk lk lk lk lkmax
S S h     ;      h h= ≤  (2.39) 

where 

hlk = elevation of lake surface, (L); 

lkmax
h  = maximum elevation of lake surface, (L). 
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If the lake surface elevation exceeds the maximum elevation, the excess water 

becomes lake outflow, Qlko.  This outflow can be directed into a stream node or into a 

downstream lake. 

 

2.6.1. Lake-Groundwater Interaction 

Similar to stream-groundwater interaction, lake-groundwater interaction can be 

expressed as 

( ) ( )lkint lk lk blk blki i i i
Q C max h ,h max h,h  ⎡ ⎤= −⎣ ⎦  (2.40) 

where 

ilkintQ  = lake-groundwater interaction, (L3/T); 

lki
C  = conductance of the lake bed material at lake node i, (L2/T); 

lkh  = lake surface elevation, (L); 

h = groundwater head at lake node i, (L); 

blki
h  = elevation of the lake bottom at node i, (L); 

The conductance of the lake bed material that appear in (2.40) can be expressed as 

lki
lk lki i

lki

K
C A

d
=  (2.41) 

where 

lki
K  = hydraulic conductivity of the lake bed material, (L/T); 

lki
d  = thickness of the lake bed material, (L). 
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It should be noted that 
ilkintQ  and lki

A  that appear in equations (2.40) and (2.41) 

are the same terms that appear in the groundwater conservation equation (2.15).  Lake 

storage equation (2.38) is coupled with groundwater conservation equation (2.15) through 

the lake-groundwater interaction term, 
ilkintQ .  In order to compute groundwater heads, 

lake storage and lake-groundwater interaction properly, it is necessary to solve equations 

(2.15) and (2.38), simultaneously.  The solution methodology used in IWFM will be 

discussed in detail later in this document. 

 

2.7. Surface Flows 

Precipitation is the natural source for the replenishment of groundwater, stream 

flows and lake storage.  The amount of precipitation that falls directly on the streams and 

lakes contributes to stream flow and lake storage immediately.  Precipitation that falls on 

the ground surface infiltrates into the soil at a rate dictated by the type of ground cover, 

physical characteristics of the soil and the soil moisture content.  The portion of the 

precipitation that is in excess of the infiltration rate generates a surface flow and runs 

towards nearby streams, lakes or other bodies of water in the direction dictated by the 

contours of the ground surface.  In situations where groundwater table rises high enough 

and intersects with the ground surface, the groundwater seeps onto the surface 

contributing to the surface flow generated by the precipitation in excess of infiltration 

(Dunne, 1978).  In IWFM, the surface flow generated through these means is termed 

direct runoff.  Direct runoff can also infiltrate into the soil further down the slope or 

evaporate before it even reaches a nearby body of water.  However, modeling this 
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complex nature of direct runoff requires highly detailed information on physical 

characteristics of the soil, ground cover, topography, evaporation patterns, etc. This 

information is generally not available at the scale that IWFM is designed for.  Therefore, 

the infiltration and evaporation of direct runoff on its course to a nearby body of water 

are neglected in IWFM.  Instead, once the direct runoff is computed it is immediately 

carried to a pre-specified stream location. 

Irrigation of agricultural lands and urban outdoors water use also follow similar 

infiltration and runoff patterns of precipitation.  In IWFM the surface flows generated by 

the agricultural irrigation and urban water use is termed as return flow.  Return flow 

generated by agricultural irrigation runs in the direction dictated by the contours of the 

ground surface, whereas return flow generated by the urban water use generally follow 

man-made structures.  In both cases, IWFM treats return flows similar to the direct runoff 

and these flows are immediately carried to a pre-specified stream location. 

In the following sections the computation of direct runoff and return flow in 

IWFM will be detailed. 

 

2.7.1. Direct Runoff 

In IWFM, direct runoff is computed using a rainfall-runoff relation developed by 

the National Resources Conservation Service (formerly known as Soil Conservation 

Service) for watersheds that are not gauged for runoff.  The SCS method estimates the 

amount of precipitation that becomes direct runoff, versus the quantity that infiltrates into 

the root zone.  This method is based on a curve number (CN) which indicates runoff 
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potential.  Higher curve numbers amount to higher runoff potentials.  Each curve number 

has been developed for a specific land use type, soil type, management practice, and 

antecedent moisture condition (USDA, 1985). 

Estimation of direct runoff depends on the quantity of precipitation, and the value 

of the retention parameter.  The retention parameter, Smax, is a function of the curve 

number and the soil moisture, and represents the infiltration occurring once runoff begins 

(Schroeder, et al.,1994).  The retention parameter for a specific land use type, soil type, 

and management practice is expressed as follows (USDA, 1985): 

max
1000

S 10
CN

= −  (2.42) 

where 

Smax = retention parameter for dry antecedent moisture conditions, (L); 

CN = curve number specified for a combination of land use type, soil 

type and management practice, (dimensionless). 

It should be noted that usage of the curve numbers, CN, listed in the original 

documentation of the SCS method produce retention parameter, Smax, in units of inches 

(USDA, 1985).  In order to use equation (2.42) to compute Smax in units other than 

inches, one needs to modify CN values accordingly.  As an example, consider the 

computation of Smax in units of feet.  A modified curve number, CN*, can be computed as 

follows: 

* max
max

1000
10S 1000CNS 10

12 12 CN*

−
= = = −  (2.43) 

where 
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*
maxS  = retention parameter in units of feet; 

CN* = modified curve number for the computation of *
maxS . 

Rewriting equation (2.43) to express CN* in terms of CN, one obtains 

12000 CN
CN*

110 CN 1000

×
=

× +
 (2.44) 

Similar expressions for CN* to compute *
maxS  in other units (other than inches) 

can also be derived.  The user should make sure that properly modified curve numbers 

based on the units utilized in the particular modeling project are obtained before inputting 

these data into IWFM. 

Equation (2.42) is valid for dry antecedent moisture conditions in which the soil 

moisture content of the soil is less than half of the difference between the field capacity 

and the wilting point.  For higher values of soil moisture content, IWFM adjusts the 

retention parameter with respect to the value of the soil moisture, as documented in the 

HELP Model Documentation (Schroeder, et al., 1994): 

( )
( ) ( )

( )

r f wp

max r f wp

T f wp

max r f wp

2
S 1 for 2

2

S  

S for 2    

⎧ ⎡ ⎤⎡ ⎤θ − θ −θ⎣ ⎦⎪ ⎢ ⎥ ⎡ ⎤− θ > θ −θ⎣ ⎦⎪ ⎢ ⎥⎡ ⎤η − θ −θ⎣ ⎦⎣ ⎦⎪
⎪= ⎨
⎪ ⎡ ⎤θ ≤ θ −θ⎪ ⎣ ⎦
⎪
⎪⎩

 (2.45) 

where 

θr = soil moisture, (L/L); 

θf = field capacity, (L/L); 
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Tη  = total porosity, (L/L); 

θwp = wilting point, (assumed to be negligible in IWFM) (L/L); 

S = retention parameter modified with respect to the soil moisture, (L). 

Some of the terms used in (2.45) have been defined in Table 2.2 and illustrated in 

Figure 2.9 for further clarification.  As stated in equation (2.45), the retention parameter 

is calculated based on the amount of soil moisture in the soil with respect to the field 

capacity.  Assuming that the wilting point is negligible, the retention in the soil will be 

less when the soil moisture exceeds 50% of the field capacity in the soil (see equation 

(2.45)). 

The SCS method sets a constraint, in which the precipitation must exceed 20% of 

the retention parameter in order for direct runoff to occur.  The fraction of the retention 

parameter is referred to as the initial abstraction, and is based on an empirical relationship 

that was developed from field experiments performed on small watersheds.  The initial 

Parameter Description

Drainable Porosity Volume of effective pore space capable of 
gravitational drainage

Field capacity Amount of water that remains in the soil after 
drainage by gravity

Available soil moisture Amount of water available for plant consumption 
after gravitational drainage, (i.e. field capacity 
less wilting point)

Wilting point Moisture content below which plants cannot 
extract further water from soil

             Table 2.2  Definitions of parametersfor a soil column
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Figure 2.9  Soil column representation 
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abstraction refers to interception, infiltration, and surface storage, which occur prior to 

runoff during a storm.  Given that the rainfall exceeds the amount of water necessary for 

interception and surface storage, the direct runoff is 

( )2

r

P t 0.2S1
S

t P t 0.8S

Δ −
=
Δ Δ +

 (2.46) 

where 

rS  = direct runoff, (L/T); 

P = precipitation rate, (L/T); 

Δt = time period over which the precipitation rate has occurred, (T). 

Direct runoff, Sr, is computed for each land use (i.e. type of ground cover) and 

soil type (i.e. physical characteristics of the soil) combination over the modeled region. 

The reader will notice differences in the units and the equation itself in (2.46) 

when compared to the original method (USDA, 1985).  The SCS method is developed for 

individual storm events with durations on the order of minutes or hours.  The 

precipitation and retention values are originally given in units of length for the duration 

of the storm.  IWFM attempts to convert the unit of length to unit of rate in order to be 

able to utilize SCS method in a time-continuous simulation mode.  For this reason, the 

term Δt has been introduced in equation (2.46) in order to maintain the consistency 

between the units of the original method and the time-continuous simulation mode of 

IWFM. 
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2.7.2. Return Flow 

For urban areas, return flow has two parts: the urban return flow from urban 

indoor applications and the return flow from urban outdoor applications. IWFM assumes 

that the entire amount of water used for urban indoors becomes return flow. On the other 

hand, return flow from water applied to urban outdoors is computed similarly to the 

return flow from agricultural lands.  

The amount of return flow from agricultural lands and urban outdoors is 

computed based on the soil moisture content and other fluxes that occur in the root zone.  

First, it is assumed that all of the agricultural and urban outdoor applied water infiltrates 

into the soil.  Then, the summation of the soil moisture that is already available in the 

root zone and the infiltration of precipitation and applied water less the 

evapotranspiration, deep percolation and field capacity becomes the agricultural or urban 

outdoors return flow: 

r r r f
f f cadj pp

D D
R max I AW ET D , 0

t t

θ θ⎛ ⎞= + + − − −⎜ ⎟Δ Δ⎝ ⎠
 (2.47) 

where 

Rf = return flow of agricultural or urban outdoors applied water, (L/T); 

Dr = rooting depth, (L); 

θr = soil moisture content of the root zone, (dimensionless); 

θf = field capacity of the root zone, (dimensionless); 

Δt = time period over which the return flow is computed, (T); 

fp
I  = infiltration of precipitation, (L/T); 

AW = agricultural or urban outdoors applied water, (L/T); 
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ETcadj = crop evapotranspiration, (L/T); 

Dp = deep percolation, (L/T). 

The methods that are used to compute ETcadj and Dp are explained in the 

following sections.  As explained earlier, once the return flow of both urban and 

agricultural application water is computed it is immediately directed to a pre-specified 

stream location. 

 

2.8. Soil Moisture in the Root Zone and Unsaturated Zone 

Even though groundwater table can rise and intersect with the ground surface 

saturating the entire soil profile, an unsaturated zone generally exists between the ground 

surface and the groundwater table.  An unsaturated zone is defined as the soil profile 

where pore space saturation is less than 100%.  The water from precipitation and 

irrigation water that infiltrate into the soil have to flow through this unsaturated zone 

before reaching the groundwater as recharge.  The top layer of this unsaturated zone 

designated by the depth of the plant roots through which moisture is drawn out of the soil 

is called the root zone.  As moisture in the root zone flows downward due to the 

gravitational force, it is also drawn out of the soil through plant roots for transpiration and 

the process of evaporation.  The combined processes of plant root uptake for transpiration 

purposes and evaporation is termed as evapotranspiration.  Figure 2.10 illustrates an 

example of a system of root zone and unsaturated zone, and the hydrological processes in 

these zones as it is modeled in IWFM.   
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To connect the groundwater system with the surface flow processes, simulation of 

storage and flow through the root zone and unsaturated zone is necessary.  In general, 

moisture in the root and unsaturated zones can move in horizontal direction as well as the 

vertical direction.  In IWFM, it is assumed that the horizontal movement of the moisture 

in the root and unsaturated zones is negligible compared to the vertical movement, 

therefore only the flow of the moisture in the vertical direction is addressed.  To increase 

the accuracy of the simulated vertical flow, IWFM has the functionality to separate the 

unsaturated zone into multiple layers (Figure 2.10).  The moisture that leaves the root 

zone and enters the unsaturated zone is termed as deep percolation.  The moisture travels 

 

Figure 2.10 Schematic representation of flow through the root zone and 
the unsaturated zone 
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downward through the unsaturated zone and eventually recharges the groundwater.  The 

groundwater recharge is named as net deep percolation (Figure 2.10). 

In the following sections, the simulation of the processes defined above and 

illustrated in Figure 2.10 will be discussed. 

 

2.8.1. Infiltration 

Infiltration is the movement of water from the ground surface into the soil.  The 

amount of precipitation that infiltrates into the soil is the portion of the precipitation that 

is left after direct runoff that is described earlier in this document.  Similarly, the quantity 

of applied water to agricultural and urban lands that infiltrates into the soil is the amount 

of applied water that does not become return flow.  Infiltration of precipitation can be 

expressed as 

f rp
I P S= −  (2.48) 

where 

fp
I  = infiltration of precipitation, (L/T); 

P = precipitation, (L/T); 

Sr = direct runoff, (L/T). 

Similarly, the infiltration of the applied water after the return flow is computed is 

f fAW
I AW R= −  (2.49) 

where 

fAW
I  = infiltration of applied water, (L/T); 
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AW  = applied water, (L/T); 

Rf = return flow, (L/T). 

Equation (2.49) is valid for the infiltration of both urban and agricultural applied water. 

 

2.8.2. Evapotranspiration 

Evapotranspiration (ET) is the combination of two separate processes, namely 

evaporation and transpiration.  Evaporation is the process where liquid water is converted 

to water vapor and removed from the evaporating surface.  Transpiration consists of the 

vaporization of the liquid water contained in plant tissues and the vapor removal to the 

atmosphere.  Both evaporation and transpiration depend on the available energy in terms 

of solar radiation and ambient air temperature, vapor pressure gradient between the air 

and the evaporation and transpiration surfaces, and the wind speed.  When the 

evaporating surface is the soil surface, the degree of the shading of the crop canopy and 

the amount of water available at the soil surface are other factors that affect the 

evaporation.  Transpiration depends on soil water content as well as the ability of the crop 

to withdraw water from the soil (Allen, et al., 1998).  Since evaporation and transpiration 

occur simultaneously and there is no easy way of distinguishing between the two 

processes, the combined process of evapotranspiration is considered in most applications. 

In general, evapotranspiration is a function of weather parameters (solar radiation, 

air temperature, humidity and wind speed), crop factors (resistance to transpiration, crop 

height, crop roughness and crop rooting characteristics) and management/environmental 
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conditions (soil salinity, land fertility, presence of hard or impenetrable soil horizons, 

cultivation practices, irrigation method, soil water content, etc.).   

Allen, et al. (1998) describes the three evapotranspiration base concepts as 

follows: 

(i) Reference crop evapotranspiration (ETo): The evapotranspiration rate from 

a reference surface that has adequate amount of water.  The reference 

surface is a hypothetical grass reference crop with specific characteristics.  

The only factors affecting ETo are climatic parameters. 

(ii) Crop evapotranspiration under standard conditions (ETc): The 

evapotranspiration rate from disease-free, well-fertilized crops, grown in 

large fields, under optimum soil water conditions, and achieving full 

production under the given climatic conditions.  ETc reflects the effect of 

climatic conditions and the crop characteristics in optimum conditions. It 

can be related to ETo through crop coefficients as 

c c oET K ET=  (2.50) 

where 

ETo = reference crop evapotranspiration, (L/T); 

ETc = crop evaporation under standard conditions, (L/T); 

Kc = crop coefficient, (dimensionless) 

(iii) Crop evapotranspiration under non-standard conditions (ETcadj): The 

evapotranspiration rate from crops grown under management and 

environmental conditions that differ from the standard conditions.  It is also 
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referred to as actual crop evapotranspiration in this document.  It can be 

related to ETo as 

cadj s c oET K K ET=  (2.51) 

where 

ETcadj = crop evapotranspiration under non-standard 

conditions, (L/T); 

Ks = water stress coefficient, (dimensionless); 

Kc = adjusted crop coefficient to reflect all other stresses 

and environmental constraints on crop 

evapotranspiration, (dimensionless). 

Detailed discussion of computing ETo and determining Kc is provided in Allen, et 

al. (1998).  IWFM assumes that these values are computed and/or measured, and ETc for 

each crop type included in the model is available as a time series input parameter.   

The water stress coefficient, Ks, is a factor that incorporates the effect of soil 

moisture shortage on the crop evapotranspiration rate. It can be expressed as (Allen, et 

al., 1998) 

r
wp r f

f

s

r f

if p
p

K

1 if p

θ⎧ θ ≤ θ ≤ θ⎪ θ⎪⎪= ⎨
⎪ θ > θ⎪
⎪⎩

 (2.52) 

where 

θr = soil moisture content in the root zone, (L/L); 

θf = field capacity of the root zone, (L/L); 
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θwp = wilting point (assumed negligible in IWFM), (L/L); 

p = average fraction of field capacity that can be depleted from the root 

zone before water stress occurs, (dimensionless). 

The factor p differs from one crop to another. It normally varies from 0.3 for 

shallow rooted plants to 0.7 for deep rooted plants.  A value of 0.5 for p is commonly 

used for many crops (Allen, et al., 1998).  The curves provided by Schultz (1974) also 

suggest that a value of 0.5 for p is a reasonable estimate.  Therefore, using equation 

(2.52), taking p as 0.5 and assuming wilting point is negligible, the actual crop 

evapotranspiration, ETcadj, can be expressed as 

r r
c

f f

cadj s c

r
c

f

2 ET if 0 0.5

ET K ET

ET if 0.5

θ θ⎧ ≤ ≤⎪ θ θ⎪⎪= = ⎨
⎪ θ⎪ >

θ⎪⎩

 (2.53) 

Figure 2.11 shows the ratio of ETcadj to ETc as a function of the ratio of the root 

zone soil moisture to the field capacity.  This figure is a linearized version of the curve 

reported by Schultz (1974). 

When the soil is bare, i.e. no crop coverage, then the following expression is used 

to compute evaporation:  

r r
c

f f

cadj

r
c

f

ET if 0 0.5

ET

ET if 0.5

θ θ⎧ ≤ ≤⎪θ θ⎪⎪= ⎨
⎪ θ⎪ >

θ⎪⎩

 (2.54) 
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where ETc denotes the bare soil evaporation when there is adequate amount of water. 

 

2.8.3. Moisture Routing in the Root Zone 

The soil moisture in the root zone is a function of the moisture that is already 

available in the soil, the moisture inflow in terms of infiltration of the precipitation and 

applied water, and the moisture outflow in terms of evapotranspiration and deep 

percolation.  The conservation equation for the root zone can be written as 

r r
f f cadj pp AW

D
I I ET D

t

∂ θ
= + − −

∂
 (2.55) 
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Figure 2.11 Ratio of actual crop evapotranspiration to crop evapotranspiration 
under standard conditions as a function of the ratio of root zone 
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where 

Dr = thickness of the root zone, (L); 

θr = soil moisture in the root zone, (L/L); 

fp
I  = infiltration of precipitation as given in equation (2.48), (L/T); 

fAW
I  = infiltration of applied water as given in equation (2.49), (L/T); 

ETcadj = actual crop evapotranspiration, (L/T); 

Dp = deep percolation, (L/T); 

t = time, (T). 

Deep percolation, Dp, is another unknown in equation (2.55).  IWFM allows the 

user to choose one of two methods to compute the deep percolation.  The first method is a 

physically-based approach that uses the soil properties, whereas the second method uses a 

user-specified deep percolation fraction to distribute the soil moisture above field 

capacity between deep percolation and return flow. 

 

(i) Deep percolation using physically-based computation   

Assuming that the percolation occurs at a constant pressure (i.e. dh dz 1= ), the 

rate of flow through the root zone equals the unsaturated hydraulic conductivity of the 

root zone (Schroeder, et al., 1994).  Deep percolation does not occur when the root zone 

moisture is less than the field capacity.  Therefore, the deep percolation from the root 

zone into the unsaturated zone can be written as 

r f

p

u r f

0 if

D

K if

θ ≤ θ⎧
⎪= ⎨
⎪ θ > θ⎩

 (2.56) 
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where 

Ku = unsaturated hydraulic conductivity of the root zone, (L/T). 

The unsaturated hydraulic conductivity is computed as a non-linear function of 

the saturated hydraulic conductivity (Campbell, 1974): 

2
3

r res
u s

T res

K K
+
λ⎛ ⎞θ − θ

= ⎜ ⎟η −θ⎝ ⎠
 (2.57) 

where 

Ks = saturated hydraulic conductivity in the root zone, (L/T); 

resθ  = residual water content, (L/L); 

Tη  = total porosity of the root zone, (L/L); 

λ = pore size distribution index, (dimensionless). 

In IWFM, the pore size distribution index, λ, is taken to be 2.  The residual water 

content ( resθ ) is the amount of water remaining in the soil under infinite capillary suction.   

The following regression equation that was developed using mean soil texture 

values (Rawls et al., 1982) is used to calculate residual water content: 

wp wp

res

wp wp

0.014 0.25 for 0.04

0.6 for 0.04

+ θ θ ≥⎧
⎪

θ = ⎨
⎪ θ θ <⎩

 (2.58) 

Substituting equation (2.58) into (2.57), assuming that λ is 2 for all soils in the 

model area and the wilting point, θwp, is negligible, the unsaturated hydraulic 

conductivity can be restated as 
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4

r
u s

T

K K
⎛ ⎞θ

= ⎜ ⎟η⎝ ⎠
 (2.59) 

Finally, substituting (2.59) into (2.56), the deep percolation can be written as 

r f

4
p r

s r f
T

0 if

D
K if

θ ≤ θ⎧
⎪

= ⎛ ⎞⎨ θ
θ > θ⎜ ⎟⎪ η⎝ ⎠⎩

 (2.60) 

 

(ii) Deep percolation using deep percolation fraction 

This approach is useful when the physically-based approach discussed above 

cannot be used due to the size of the simulation time step being inconsistent with the 

characteristic time scale of the deep percolation flow process or when values of soil 

parameters used in physically-based approach are not available.  In this case, deep 

percolation is computed as a fraction of the soil moisture that is above field capacity: 

( )
r f

p r r f
Dp r f

0 if

D D
f if

t

θ ≤ θ⎧
⎪= ⎨ θ −θ

θ > θ⎪ Δ⎩

 (2.61) 

where  

fDp = deep percolation fraction between 0 and 1; 0 means entire soil 

moisture above field capacity becomes return flow and 1 means 

entire soil moisture above field capacity becomes deep percolation. 

Solution of equation (2.55) coupled with (2.60) or (2.61) gives the root zone 

moisture, θr, and subsequently deep percolation, Dp.  Once Dp is computed, it becomes 

inflow into the unsaturated zone.  Computation of Dp also allows the computation of 
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agricultural return flow using equation (2.47) and infiltration of applied water using 

(2.49). 

 

2.8.4. Moisture Routing in the Unsaturated Zone 

Moisture routing in the unsaturated zone is performed over a pre-specified 

number of unsaturated layers.  The simulation of moisture through multiple layers 

approximates the vertical movement of water in the physical system more precisely 

because of the finer spatial discretization created.  The lag between the time when 

moisture enters the unsaturated zone above and the time it leaves the unsaturated zone 

below can be simulated more accurately.   

The methodology for routing moisture through unsaturated layers is similar to that 

used in the root zone as described above.  The conservation equation for an unsaturated 

layer m is 

( )m u,m

in,m out,m

D
Q Q

t

∂ θ
= −

∂
 (2.62) 

where 

m = unsaturated layer number counting from top down, 

(dimensionless); 

Dm = thickness of layer m, (L); 

u,mθ  = soil moisture in mth unsaturated layer, (L/L); 

Qin,m = inflow into unsaturated layer m from layer m-1, (L/T); 

Qout,m = outflow from unsaturated layer m to layer m+1, (L/T); 
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t = time, (T). 

Utilizing the assumptions explained in the preceding section, the flow out of layer 

m, Qout,m, can be expressed as 

out,m u,mQ K=  (2.63) 

and  

4

u,m
u,m s,m

T,m

K K
⎛ ⎞θ

= ⎜ ⎟⎜ ⎟η⎝ ⎠
 (2.64) 

where  

Ku,m = unsaturated hydraulic conductivity of layer m, (L/T); 

Ks,m = saturated hydraulic conductivity of layer m, (L/T); 

ηT,m = total porosity of unsaturated layer m, (L/L). 

Equation (2.62), coupled with (2.63), is solved for each unsaturated layer from top 

down in a sequential order.  At each layer, the inflow term Qin,m is known from the 

routing of moisture at the layer above, i.e. Qin,m=Qout,m-1.  For the first unsaturated layer 

(i.e. m=1), Qin,m is equal to the deep percolation computed by (2.60) or (2.61).  The 

outflow at the last unsaturated layer is the net deep percolation into the groundwater 

system. 

The number of layers and their thicknesses are predefined input parameters.  

Based on the elevation of the groundwater table, three scenarios can occur for an 

unsaturated layer during the simulation period: (i) the total thickness of the layer is 

unsaturated; (ii) the groundwater table intersects the unsaturated layer so that the partial 

thickness of the layer is saturated and (iii) the layer is occupied completely by 

groundwater, and is no longer unsaturated.  If the elevation of the groundwater table is 
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lower than the bottom of the last unsaturated layer, then IWFM re-computes the thickness 

of the last layer and extends it down to the groundwater table.  If a layer becomes fully 

saturated during the simulation period due to the rising groundwater table, the moisture 

routing in that unsaturated layer is ceased until the layer is at least partially unsaturated 

again.  If a layer is partially occupied by saturated groundwater, then the thickness of the 

layer, Du,m, that appears in equation (2.62) is computed as the unsaturated thickness of 

that layer.  Therefore, even though the thicknesses of each unsaturated layer are pre-

specified, they are in fact dynamic, and computed internally in IWFM through the 

simulation period. 

 

2.9. Small Watersheds 

Small watersheds adjacent to a model area can contribute to surface and 

subsurface flows occurring in the model area.  To account for the flow contributions of 

small watersheds, surface and subsurface flows at these watersheds are simulated with an 

approximate method.  It is assumed that flow between the small watersheds and the 

modeled region is one-way; the direction of subsurface and surface flows is always from 

small watersheds into the modeled region. 

The surface flow that occurs in a small watershed is assumed to be due solely to 

the direct runoff of precipitation: 

( )2
w w

wr w
w w

P t 0.2S1
S A

t P t 0.8S

Δ −
=
Δ Δ +

 (2.65) 

where 
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Swr = direct runoff from the small watershed, (L3/T); 

Pw = precipitation rate at the small watershed, (L/T); 

Sw = retention parameter at small watershed modified with respect to the 

soil moisture in the unsaturated zone (see previous sections for the 

computation of this term), (L); 

Δt = time period over which the precipitation rate has occurred, (T); 

Aw = surface area of the small watershed, (L2). 

As described earlier, once the direct runoff is computed the infiltration that occurs 

at the small watershed can be computed as  

( )wf w wr wp
I P S A= −  (2.66) 

where 

wfp
I  = infiltration of precipitation at the small watershed, (L3/T). 

The vertical movement of moisture in the unsaturated zone at the small watershed 

is computed using the methods described in preceding sections.  The computed deep 

percolation, as an outcome of the soil moisture accounting, represents the inflow to the 

groundwater storage at a small watershed.  The conservation equation for the 

groundwater storage at the small watershed is expressed as 

wg
wp wg wgs

S
D Q Q

t

∂
= − −

∂
 (2.67) 

where 

Swg = groundwater storage within the small watershed boundary, (L3); 
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Dwp = net deep percolation, i.e. recharge, to the groundwater storage 

within the small watershed domain (computed using the methods 

described in the preceding section), (L3/T); 

Qwg = subsurface outflow from the small watershed that contributes to the 

groundwater storage at the modeled area, (L3/T); 

Qwgs = contribution of groundwater storage to the surface flow at the small 

watershed, (L3/T); 

t = time, (T). 

The subsurface flow from the small watershed, Qwg, contributes to the 

groundwater storage at the modeled area at pre-specified locations.  It is approximated as 

wg wg wgQ C S=  (2.68) 

where 

Cwg = subsurface flow recession coefficient, (1/T). 

Contribution of the groundwater storage to the surface flow at the small 

watershed, Qwgs, is computed as a non-zero value only if the groundwater storage, Swg, 

exceeds a predefined threshold value: 

( )wgs ws wg wgtQ C S S= −  (2.69) 

where 

Cws = surface runoff recession coefficient, (1/T); 

Swgt = threshold value for groundwater storage within the small watershed 

above which groundwater at the small watershed contributes to 

surface flow, (L3). 
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Finally, the total surface flow from the small watershed that contributes to the 

surface flows at predefined locations in the modeled area is computed as 

ws wgs wrQ Q S= +  (2.70) 

where 

Qws = total surface flow from the small watershed that contributes to the 

surface flows in the modeled area, (L3/T).  
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3. Numerical Methods Used in Modeling of Hydrological Processes 

The conservation equations for the hydrological processes modeled in IWFM are 

detailed in previous chapter.  In order to model the hydrological processes and the 

interactions among them, it is necessary to solve these equations simultaneously.  

However, since most of these equations are non-linear and the interaction terms are 

complex, it is impossible to obtain an analytical solution except for very simple, 

hypothetical cases.  For this reason, IWFM utilizes numerical techniques to obtain 

approximate solutions to the equations listed in the previous chapter.  This chapter is 

devoted to the explanation of the numerical methods used in IWFM. 

 

3.1. Finite Element Representation of the Groundwater Equation 

The conservation equation for the groundwater system is given in the previous 

chapter as  

( )

( )

( )

( )

u ds
u u d d o sd

sint
s s

s

lkint
lk lk

lk

td
td td

td

S h0 T h I L h I L h q q
t

Qx x , y y
A
Qx x , y y
A

Qx x , y y
A

∂
= − ∇ ∇ + Δ + Δ − +

∂

−δ − −

−δ − −

−δ − −

K K

 

(3.1)

 

Equation (3.1) is a partial differential equation that models the unsteady 

groundwater head field in a multi-layer aquifer system that consists of confined and/or 

unconfined layers.  In order to solve this equation, IWFM utilizes the Galerkin finite 
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element method to discretize the spatial domain and obtain a set of ordinary differential 

equations in which the unknowns are the groundwater heads at a finite number of nodal 

points within the model domain.  The spatially and temporally continuous groundwater 

head field in an aquifer layer m, can be approximated by the head values at discrete nodal 

points as (Huyakorn and Pinder, 1983): 

( ) ( ) ( )
N m

j j
j N (m 1) 1

ĥ x, y, t x, y h t
⋅

= ⋅ − +

= ω∑  (3.2) 

where 

( )ĥ x, y, t  = approximation of h(x, y, t), (L); 

( )j x, yω  = shape functions, (dimensionless); 

hj(t) = nodal hydraulic head values, (L); 

m = aquifer layer number, (dimensionless); 

N = total number of nodal points in an aquifer layer, (dimensionless). 

Equation (3.2) is valid for all layers of an aquifer system that consists of NL 

layers.  Substitution of (3.2) into (3.1) will generally result in a nonzero residual ε:  

( )
( )

( )

( )

u ds
u u d d o sd

sint
s s

s

lkint
lk lk

lk

td
td td

td

ˆS h ˆ ˆ ˆT  h I L h I L h q q
t

Qx x , y y
A
Qx x , y y
A

Qx x , y y
A

∂
ε = − ∇ ∇ + Δ + Δ − +

∂

−δ − −

−δ − −

−δ − −

K K

 

(3.3)

 

According to the Galerkin approach, the inner products of equation (3.3) and the 

shape functions ωi are required to be equal to zero. That is, equation (3.3) is multiplied by 
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the shape functions ( )( )i i N m 1 1, , N mω = ⋅ − + ⋅"  for each aquifer layer.  The resulting 

LN N×  equations are integrated over the entire domain and the result of each of these 

integrals is required to be equal to zero (Huyakorn and Pinder, 1983): 

( )

( )

( )

( ) ( )

u ds
u u d d o sd

sint
s s

s

lkint
lk lk

lk

td
td td i

td L

ˆS h ˆ ˆ ˆ0 T  h I L h I L h q q
t

Qx x , y y
A
Qx x , y y
A

i N m 1 +1, ,N mQx x , y y d
A m 1, , N

  

Ω

⎛ ∂
= − ∇ ∇ + Δ + Δ − +⎜⎜ ∂⎝

−δ − −

−δ − −

⎞ = ⋅ − ⋅
−δ − − ω Ω⎟ =⎠

∫∫
K K

"
"

 

(3.4)

 

where  

Ω = spatial domain of the problem.   

It should be noted that the shape functions depend only on the geometric 

characteristics of the finite elements, therefore they are the same for each layer, i.e. 

i i N i N (N 1)L+ + ⋅ −ω = ω = = ω"  where i 1, , N= " . 

Equation (3.4) is valid for all layers of a multi-layer aquifer system with NL 

layers.  In fact it is necessary to define equation (3.4) for all layers of the aquifer system 

in order to obtain a closed system of equations.  Figure 3.1 depicts the node numbering 

convention used in IWFM for a hypothetical aquifer system with NL layers and each 

layer discretized into 2 elements with N=5 nodes.  This node numbering convention is 

used interchangeably in the rest of this document to express Lu, Ld, hu and hd (refer to 

previous chapter for a definition of the terms) for a node as Lj-N, Lj+N, hj-N and hj+N, 

respectively. 
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Substituting equation (3.2) into (3.4) and applying Green’s theorem to eliminate 

the second order derivatives result in the following equation: 

( ) ( )

( )

( )
( )

N m s jj
i j

j N (m 1) 1

N m N m

i j j j j i
j N (m 1) 1 j N (m 1) 1

N m
u

j N j i j
j N (m 1) 1

N m
d

L j N j i j
j N m 1 1

o i sd i

S h
0 d

t

T h n d T h d

H m 2 L h d

1 H m N L h d

q d q d

⋅

= ⋅ − +Ω

⋅ ⋅

= ⋅ − + = ⋅ − +Γ Ω

⋅

−
= ⋅ − +Ω

⋅

+
= ⋅ − +Ω

Ω Ω

∂
= ω ω Ω

∂

− ω ∇ ω ⋅ Γ + ∇ ω ⋅∇ω Ω

+ − Δ ω ω Ω

⎡ ⎤+ − − Δ ω ω Ω⎣ ⎦

− ω Ω + ω Ω

∑∫∫

∑ ∑∫∫ ∫∫

∑∫∫

∑∫∫

∫∫ ∫

K K KK

( )

( )

( )

sint
s s i

s

lkint
lk lk i

lk

td
td td i

Ltd

Qx x , y y  d
A

Qx x , y y  d
A

i N (m 1) 1, , N mQx x , y y  d
m 1, , NA

Ω

Ω

Ω

− δ − − ω Ω

− δ − − ω Ω

= ⋅ − + ⋅
− δ − − ω Ω

=

∫

∫∫

∫∫

∫∫
"

"

 

(3.5)

 

where  

Γ = boundary of the spatial domain, (L); 

nK  = outward unit vector perpendicular to the boundary, 

(dimensionless); 

NL = total number of aquifer layers, (dimensionless); 
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( )H i  = Heaviside (step) function to express the indicator functions Iu and 

Id in terms of the layer number m, explicitly, (dimensionless); 

The vertical head differences, u
jhΔ  and d

jhΔ , at a finite element node are also 

introduced in (3.5).  These terms are computed by using the head values in the vertical 

direction at a finite element node; i.e. hj-N, hj and hj+N. 

IWFM utilizes a mass lumping method to simplify equation (3.5).  According to 

this method, it is assumed that the head over an element can be approximated by a head 

value at any one of the nodes; i. e. jĥ h= .  The choice of the node for this purpose is 

 

Figure 3.1 Node numbering convention used in IWFM for an aquifer 
system with NL layers and N=5 nodes in each layer 

1 2 

4 3 
5 

6 7 

( )L5 N 1 2− +  

#
#
#

 

8 9 
10 

( )L5 N 1 1− +  

( )L5 N 1 4− +  ( )L5 N 1 3− +  
( )L5 N 1 5− +  

Layer 1 

Layer 2 

Layer NL 
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based solely on the index j.  It has been suggested, particularly in non-linear equations, 

that mass lumping typically generates a smoother numerical solution than that arising 

from the strict Galerkin, or consistent, formulation (Allen, et al., 1988).  Applying the 

mass lumping technique to the storage and leakage terms of (3.5) (i.e. first, fourth and 

fifth integral terms), and performing the differentiations in the third integral term results 

in 

( )

( )

( )

( )

( )

s ii
i

N m
j ji i

i j
j N m 1 1

u
i N i i

d
L i N i i

o i sd i

sint
s s i

s

lkint
lk lk i

lk

S h
0 d

t

q d Th d
x x y y

H m 2 L h d

1 H m N L h d

q d q d

Qx x , y y  d
A

Qx x , y y  d
A

Ω

⋅

Γ
= ⋅ − +Γ Ω

−
Ω

+
Ω

Ω Ω

Ω

Ω

∂
= ω Ω

∂

∂ω ∂ω⎛ ⎞∂ω ∂ω
− ω Γ + + Ω⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

+ − Δ ω Ω

⎡ ⎤+ − − Δ ω Ω⎣ ⎦

− ω Ω + ω Ω

− δ − − ω Ω

− δ − − ω Ω

∫∫

∑∫∫ ∫∫

∫∫

∫∫

∫∫ ∫∫

∫∫

∫∫

( ) td
td td i

Ltd

i N (m 1) 1, , N mQx x , y y  d
m 1, , NAΩ

= ⋅ − + ⋅
− δ − − ω Ω

=∫∫
"

"

 

(3.6)
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where ( )
N m

j j
j N (m 1) 1

q T h n
⋅

Γ
= ⋅ − +

= ∇ ω ⋅∑
K K  is the inflow that is perpendicular to the boundary of 

aquifer layer m.  Equation (3.6) is valid for all layers of a multi-layer aquifer system.  

Therefore, it represents a set of LN N×  ordinary differential equations for an aquifer 

system that is comprised of NL layers with the unknown groundwater head values at 

LN N×  nodal points.   

To solve equation (3.6), the time coordinate is also discretized using the fully 

implicit discretization method.  Utilization of this method results in the following 

equation:  
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( ) ( )

( )

( ) ( )

( ) ( )

( )

t 1 t 1 t t
s i i s i ii i

i

N m
j jt 1 t 1 t 1 i i

i j
j N m 1 1

t 1u
i N i i

t 1d
L i N i i

t 1 t 1
i io sd

s s

S h TOP S TOP h
0 d

t

q d T h d
x x y y

H m 2 L h d

1 H m N L h d

q d q d

Qx x , y y

+ +

Ω

⋅
+ + +

Γ
= ⋅ − +Γ Ω

+

−
Ω

+

+
Ω

+ +

Ω Ω

− + −
= ω Ω

Δ

∂ω ∂ω⎛ ⎞∂ω ∂ω
− ω Γ + + Ω⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

+ − Δ ω Ω

⎡ ⎤+ − − Δ ω Ω⎣ ⎦

− ω Ω + ω Ω

− δ − −

∫∫

∑∫∫ ∫∫

∫∫

∫∫

∫∫ ∫∫

( )

( )

t+1
sint

i
s

t+1
lkint

lk lk i
lk

t 1
td

td td i
Ltd

 d
A

Q
x x , y y  d

A

Q i N (m 1) 1, , N m
x x , y y  d  

m 1, , NA

Ω

Ω

+

Ω

ω Ω

− δ − − ω Ω

= ⋅ − + ⋅
− δ − − ω Ω

=

∫∫

∫∫

∫∫
"

"

 

(3.7)

 

where 

TOPi = top elevation of the aquifer at node i, (L); 

Δt = length of time step, (T); 

t = index for time step, (dimensionless). 

The time discretization of the first integral term in (3.7) reflects the effort to 

simulate changing aquifer conditions.  As an example, consider the case where the 
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aquifer converts from confined to unconfined during a simulation period Δt.  At time step 

t, t
si

S  is equal to the storage coefficient, oi
S , of the confined aquifer.  At time step t+1, 

t 1
si

S +  is equal to the specific yield, yi
S , of the unconfined aquifer.  In this case, the rate of 

release of water from storage during the time step has two components (McDonald and 

Harbaugh, 1988): 

( )t
o i iiS TOP h

t

−

Δ
 (3.8) 

and 

( )t 1
y i iiS h TOP

t

+ −

Δ
 (3.9) 

Equation (3.8) is the rate of release of water from the confined storage and equation (3.9) 

is the rate of release of water from the unconfined storage.  

To compute the integrals in (3.7), it is necessary to define the global shape 

functions, ωi, explicitly.  In finite element method, the shape functions are defined 

separately for each element so that an element shape function, e
iω , is non-zero only over 

the particular element it is defined for, and is zero for the rest of the spatial domain.  

When the element shape functions are combined, they will produce the global shape 

functions within the model domain.  Since element shape functions are non-zero only 

over the particular element, the integrals in (3.7) defined over the entire domain, Ω, will 

reduce to integrals over the part of the domain occupied by individual elements, Ωe.  

With this approach, the task is reduced to the computation of the contribution of each 
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element to the global set of equations given in (3.7).  Based on the above discussion, (3.7) 

can be expressed as 

( ) ( )
( )

( )
( )

( ) ( )

( ) ( )

e
i i

i
ee

j ji i
e i j

e e

i
e

i

t 1 t 1 t tN m i i i is s e e

e N m 1 1

e ee eN m t 1t 1 e e e t 1 e

j N m 1 1

t 1u e e
i N i

t 1d e
L i N i

S h TOP S TOP h
0  d

t

q d  T h d
x x y y

H m 2 L h d

1 H m N L h

Γ
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= ⋅ − + Ω

⋅ ++ +
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+
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Ω

+
+

⎧ − + −⎪= ω Ω⎨ Δ⎪⎩

⎛ ⎞∂ω ∂ω∂ω ∂ω⎜ ⎟− ω Γ + + Ω⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟
⎝ ⎠

+ − Δ ω Ω

⎡ ⎤+ − − Δ ω⎣ ⎦

∑ ∫∫

∑∫∫ ∫∫

∫∫
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t 1 e e t 1 e e
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e esint
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s

t+1
e e

lk lk
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e e
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Ltd

d

q d q d

Qx x , y y d
A
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x x , y y d

A

Q i N (m 1) 1, , N m
x x , y y d

m 1, , NA

Ω
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Ω Ω

Ω

Ω

+

Ω

Ω

− ω Ω + ω Ω

− δ − − ω Ω

− δ − − ω Ω

⎫ = ⋅ − + ⋅⎪− δ − − ω Ω ⎬ =⎪⎭
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∫∫ ∫∫

∫∫

∫∫

∫∫
"
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(3.10)

 

where 
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e
iω  = element shape function defined at node i of element e, 

(dimensionless); 

Ωe = portion of the model domain occupied by element e, (L2); 

Γe = face of element e that lies on the model boundary, (L); 

e = index for element number, (dimensionless); 

Ne = number of elements in an aquifer layer, (dimensionless). 

A particular equation from the equation set (3.10) represents the approximate 

form of the groundwater conservation equation at a node i.  The element shape functions 

will be non-zero only for those elements that connect at node i.  Therefore, only the 

integrals of (3.10) that are defined over these elements will have non-zero values. 

In IWFM, the finite element method is implemented with linear triangular and/or 

bilinear quadrilateral elements.  In this approach, three nodes define a triangular element, 

whereas a quadrilateral element consists of four nodes.  For both types of elements, the 

nodes are the points within the problem domain where heads are calculated.  In the 

following section, the expressions of the element shape functions for linear triangular and 

bilinear quadrilateral elements are derived. 

 

3.1.1. Shape Functions 

3.1.1.a. Linear Triangular Elements 

For a linear triangular element with nodes i, j, k in the counterclockwise direction 

(Figure 3.2), the head over the element e can be approximated by a linear interpolation 

function (Huyakorn and Pinder, 1983): 
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 (3.11) 

Substituting the coordinates and the head values at each node into (3.11) will 

generate 3 equations with 3 unknowns, namely a1, a2 and a3.  Solving the system of 

equations and rearranging terms results in an estimate of the head that is valid over the 

linear triangular element e: 

 (3.12) 

where 

  (3.13) 

 (3.14) 

 (3.15) 

yaxaa)y,x(ĥ 321
e ++=

k
e
kj

e
ji

e
i

e h)y,x(h)y,x(h)y,x()y,x(ĥ ω+ω+ω=

( ) ( ) ( )[ ]yxxxyyyxyx
A2
1)y,x( jkkjjkkje

e
i −+−+−=ω

( ) ( ) ( )[ ]yxxxyyyxyx
A2
1)y,x( kiikkiike

e
j −+−+−=ω

( ) ( ) ( )[ ]yxxxyyyxyx
A2
1)y,x( ijjiijjie

e
k −+−+−=ω

 

Figure 3.2  A representative triangular element 

j, (xj, yj) 

i, (xi, yi) 

k, (xk, yk) 
e 
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(3.16)

 

In (3.12),  are the element shape functions and Ae is the area of the 

triangular element. 

 

3.1.1.b. Bilinear Quadrilateral Elements 

To define the shape functions for bilinear quadrilateral elements, the element 

coordinates are transformed from (x, y) space into (ξ, η) space (see Figure 3.3) so as to 

use efficient numerical techniques in carrying out the integrals given in equation (3.10).  

Using the Lagrange polynomials, x and y can be expressed in terms of ξ and η in the 

following form (Huyakorn and Pinder, 1983):  

4
e
m m

m 1
x ( , ) x

=

= ω ξ η∑  (3.17) 

4
e
m m

m 1
y ( , ) y

=

= ω ξ η∑  (3.18) 

where e
m ( , )ω ξ η  are the element shape functions in (ξ, η) space.  

The shape functions e
m ( , )ω ξ η  can be expressed in terms of first-degree Lagrange 

polynomials as  

( )
2 2

e i k
m m m

  i 1   k 1i k
m m

i k

, ,        m 1, , 4
= =

ξ ≠ξ η ≠η

⎛ ⎞ ⎛ ⎞ξ − ξ η − η
ω ξ η = =⎜ ⎟ ⎜ ⎟

ξ − ξ η − η⎝ ⎠ ⎝ ⎠
∏ ∏ "  (3.19) 

( ) ( ) ( )[ ]

( )( ) ( )( )[ ]ikkjkjki

jkkjkiikijji
e

yyxxyyxx
2
1      

yxyxyxyxyxyx
2
1A

−−+−−=

−+−+−=

e
k

e
j

e
i  , , ωωω
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ξ 

1 
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21
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1, (x1, y1) 

2, (x2, y2)

3, (x3, y3)

4, (x4, y4)

Figure 3.3 Transformation of a quadrilateral element from (x, y) space 
to (ξ, η) space 
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where ξm and ηm are the coordinate values of node m in (ξ, η) space, whereas 

1 1 1ξ = η = −  and 2 2 1ξ = η = .  The formulation in (3.19) results in the following shape 

functions: 

e
1

1( , ) ( 1)( 1)
4

ω ξ η = ξ − η −  (3.20) 

e
2

1( , ) (1 )(1 )
4

ω ξ η = + ξ − η  (3.21) 

e
3

1( , ) ( 1)( 1)
4

ω ξ η = ξ + η +  (3.22) 

e
4

1( , ) (1 )(1 )
4

ω ξ η = − ξ + η  (3.23) 

Furthermore, an integral defined over the element area in (x, y) space can be 

expressed in (ξ, η) space as 

y x 1 1b b

y x 1 1a a

f (x, y) dx dy f ( , ) J  d  d
− −

= ξ η ξ η∫ ∫ ∫ ∫  (3.24) 

where  is the determinant of the Jacobian of the transformation from (x, y) space into 

(ξ, η) space: 

x y      
x y y xJ   

x y      

∂ ∂
∂ξ ∂ξ

∂ ∂ ∂ ∂
= = −

∂ξ ∂η ∂ξ ∂η
∂ ∂
∂η ∂η

 (3.25) 

The partial derivatives that appear in (3.25) can be calculated by substituting 

(3.20)-(3.23) into (3.17) and (3.18), and by performing the appropriate partial 

differentiation.  After algebraic manipulations, (3.25) can be written as 

J
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( )1J a b c
8

= + ξ + η  (3.26) 

where 

( )( ) ( )( )1 3 2 4 2 4 1 3a x x y y x x y y= − − − − −  (3.27) 

( )( ) ( )( )1 2 3 4 3 4 1 2b x x y y x x y y⎡ ⎤= − − − + − −⎣ ⎦  (3.28) 

( )( ) ( )( )1 4 2 3 2 3 1 4c x x y y x x y y⎡ ⎤= − − − + − −⎣ ⎦  (3.29) 

 

3.1.2. Computation of Integrals 

Of all the terms included in the integrands that appear in (3.10), only e
iω , ( )t 1eT

+
 

and the dirac delta functions (namely, ( )s sx x , y yδ − − , ( )lk lkx x , y yδ − −  and 

( )td tdx x , y yδ − − ) are spatial functions.  The rest of the terms of the integrands are either 

constant over an element or only functions of time (refer to the following sections which 

demonstrate that land subsidence, stream-groundwater interaction, lake-groundwater 

interaction and tile drain/subsurface irrigation flows over an element as functions of time 

only).  It should be noted that the boundary flow, 
( )

N me
t 1 e e

e i
e N m 1 1 ee

q d
⋅

+

Γ= ⋅ − + Γ

ω Γ∑ ∫∫ , is a part of the 

boundary conditions and its value should already be available.  A common practice in 

finite element method is to assume that the transmissivity, ( )t 1eT
+

, is constant over an 

individual element but differs from one element to another.  In IWFM, ( )t 1eT
+

 is 
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computed as the average transmissivity over an element.  Approximating ( )t 1eT
+

 using 

the element shape functions and averaging it over an element e, one obtains 

( )
net 1e t 1 e e

j je
j 1e

1T T d
A

+ +

=Ω

⎛ ⎞
= ω Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫∫  (3.30) 

where 

ne = number of nodes that constitute element e; 3 for a triangular 

element and 4 for a quadrilateral element, (dimensionless); 

Ae = area of element e, (L2); 

t 1
jT +  = transmissivity at the jth node that constitute element e, (L2/T). 

Once the elemental transmissivity, ( )t 1eT
+

, is defined, IWFM utilizes a 

simplification procedure on the conductance term (third integral of equation (3.10)) in 

order to decrease the required computer storage.  At node i, the conductance term is 

expressed as 

( )
( )

( ) ( )
( )

e

e

e ee eN m t 1 j je t 1 ei i
j

j N m 1 1

N mt 1e e e t 1 e e t 1 e
i j j i i j

j N m 1 1
        j i

 T h d
x x y y

T h h d

⋅ + +

= ⋅ − + Ω

⋅+ + +

= ⋅ − +Ω
≠

⎛ ⎞∂ω ∂ω∂ω ∂ω⎜ ⎟+ Ω
∂ ∂ ∂ ∂⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟= ∇ω ∇ω + ∇ω ∇ω Ω
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∫∫

∑∫∫
K K K K

 

(3.31) 

In equation (3.31), the ith term of the summation is simply separated from the 

summation notation.  It can be shown that the shape functions for both linear triangular 

and bilinear quadrilateral elements sum up to unity: 
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( )

N m
e
j

j N m 1 1
1

⋅

= ⋅ − +
ω =∑  (3.32) 

From (3.32) 

( ) ( )

N m N m
e e e
j i j

j N m 1 1 j N m 1 1
        j i

0
⋅ ⋅

= ⋅ − + = ⋅ − +
≠

∇ω = ∇ω + ∇ω =∑ ∑
K K K

 (3.33) 

or 

( )

N m
e e
i j

j N m 1 1
        j i

⋅

= ⋅ − +
≠

∇ω = − ∇ω∑
K K

 (3.34) 

Substituting (3.34) into (3.31) results in 

( )
( )

( ) ( ) ( )
( )( )

( ) ( )

e

e

eN m e e et 1 je t 1 ei i i
j

j N m 1 1

N m N mt 1e e e t 1 e e t 1 e
i j j i j i

j N m 1 1 j N m 1 1
        j i         j i

t 1e e e t 1 t 1
i j i j

j N

 T h d
x x y y

T h h d

T h h

⋅ + +

= ⋅ − + Ω

⋅ ⋅+ + +

= ⋅ − + = ⋅ − +Ω
≠ ≠

+ + +

= ⋅

⎛ ⎞∂ω∂ω ∂ω ∂ω⎜ ⎟+ Ω
∂ ∂ ∂ ∂⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟= ∇ω ∇ω − ∇ω ∇ω Ω
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − ∇ω ∇ω −

∑ ∫∫

∑ ∑∫∫
K K K K

K K

( )e

N m
e

m 1 1
        j i

d
⋅

− +Ω
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟ Ω
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∫∫

 

(3.35)

 

After substituting (3.30) and (3.35) into (3.10), the only spatial functions defined 

over an element are the element shape functions.  The rest of the terms included in the 

integrands can be moved out of the integrals.  After this procedure only the following 

integrals remain to be computed for each element in (3.10): 
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e e
i

e
d

Ω

ω Ω∫∫  (3.36) 

( ) e e
o o i

e
x x , y y d

Ω

δ − − ω Ω∫∫  (3.37) 

e ee e
j j ei i

e
d

x x y y
Ω

⎛ ⎞∂ω ∂ω∂ω ∂ω
+ Ω⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫∫  (3.38) 

In (3.37) xo and yo represent either the coordinates of a stream location, (xs, ys), 

the coordinates of a lake location, (xlk, ylk), or the coordinates of a tile drain/subsurface 

irrigation system, (xtd, ytd), depending on the integral being computed in (3.10). 

 

3.1.2.a. Integration over Triangular Elements 

After substituting any of the equations (3.13)-(3.15) into (3.36), it can be shown 

that (Huyakorn and Pinder, 1983) 

e
e e
i

e

Ad
3

Ω

ω Ω =∫∫  (3.39) 

where Ae is the area of the triangular element and it is given in equation (3.16). 

In IWFM, it is assumed that the integral in (3.37) yields the area of stream, lake or 

tile drain/subsurface irrigation system that lies over the part element e that is associated 

with node i: 

( ) e e e
o o o,ii

e
x x , y y d A

Ω

δ − − ω Ω ≅∫∫  (3.40) 

where e
o,iA  is the elemental area of the stream, lake or tile drain/subsurface irrigation 

system depending on the integral being computed in (3.10). 
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By differentiating the equations (3.13)-(3.15) with respect to x and y, and 

substituting them into (3.38) one obtains (Huyakorn and Pinder, 1983) 

( )( ) ( )( )

e ee e
j j ei i

e

j k k i j k k ie

d
x x y y

1 y y y y x x x x
4A

Ω

⎛ ⎞∂ω ∂ω∂ω ∂ω
+ Ω⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤= − − + − −⎣ ⎦

∫∫
 

(3.41) 

 

3.1.2.b. Integration over Quadrilateral Elements 

IWFM utilizes the coordinate transformation from (x, y) space into (ξ, η) space 

and uses 2-point Gaussian quadrature technique in order to calculate the integrals in 

(3.36) and (3.38) numerically for quadrilateral elements (Gerald and Wheatley, 1994).  

Using the equality given in (3.24) 

( )
1 1

e e e
i i

e -1 -1

x, y d ( , ) J d d
Ω

ω Ω = ω ξ η ξ η∫∫ ∫ ∫  (3.42) 

where ( )i ,ω ξ η  is given in (3.19).  

Application of the 2-point Gaussian quadrature on the integral in (3.42) results in 



 3-21

( )
1 1

e
i

1 1

1 1

1 1

, J d  d

G( , ) d  d

1 1 1 1 1 1 1 1G , G , G , G ,
3 3 3 3 3 3 3 3

− −

− −

ω ξ η ξ η

= ξ η ξ η

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≅ + − + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫

∫ ∫  

(3.43)

 

where ( ) ( )e
iG , , Jξ η = ω ξ η  and J  is given in (3.26). 

Similar to the assumption made for triangular elements, it is assumed that the 

integral given in (3.37) is equal to the area of stream, lake or tile drain/subsurface 

irrigation system over the part of quadrilateral element e that is associated with node i: 

( ) e e e
o o o,ii

e
x x , y y d A

Ω

δ − − ω Ω ≅∫∫  (3.44) 

To compute the integral in (3.38) for a quadrilateral element, it is necessary to 

define the partial derivatives in terms of ξ and η.  Using the chain rule, one obtains 

e e e
i i i

e e e
i i i

x y
x y

x y
x y

∂ω ∂ω ∂ω∂ ∂
= +

∂ξ ∂ ∂ξ ∂ ∂ξ

∂ω ∂ω ∂ω∂ ∂
= +

∂η ∂ ∂η ∂ ∂η

 

which can be expressed in matrix form as 

e e
i i

ee
ii

x
J

y

⎧ ⎫ ⎧ ⎫∂ω ∂ω
⎪ ⎪ ⎪ ⎪∂ξ ∂⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪∂ω∂ω⎪ ⎪ ⎪ ⎪

∂⎪ ⎪ ⎪ ⎪∂η ⎩ ⎭⎩ ⎭  

(3.45) 
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where 

x y

J
x y

∂ ∂⎡ ⎤
⎢ ⎥∂ξ ∂ξ⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
∂η ∂η⎢ ⎥⎣ ⎦

 is the Jacobian of the transformation whose determinant is given in 

(3.25).  Equation (3.45) can be solved for 
e e
i i and 

x y
∂ω ∂ω
∂ ∂

 using matrix algebra: 

ee
ii

1

e e
i i

x
J

y

−

⎧ ⎫⎧ ⎫ ∂ω∂ω
⎪ ⎪⎪ ⎪ ∂ξ∂ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪∂ω ∂ω⎪ ⎪ ⎪ ⎪
∂⎪ ⎪ ⎪ ⎪∂η⎩ ⎭ ⎩ ⎭

 (3.46) 

In (3.46), J  stands for the determinant of the Jacobian, which is given in (3.25).  

Based on these results, the integral in (3.38) can be transformed into the (ξ, η) space as  

( )

e ee e
j j ei i

e

1 1

1 1

 d  
x x y y

G ,  d  d

1 1 1 1 1 1 1 1G , G , G , G ,
3 3 3 3 3 3 3 3

Ω

− −

⎛ ⎞∂ω ∂ω∂ω ∂ω
+ Ω⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

= ξ η ξ η

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≅ + − + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∫∫

∫ ∫  

(3.47)

 

where 
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( )
e ee e
j ji i

e ee e
j ji i

1 y y y yG ,
J

x x x x                      

⎧ ⎛ ⎞∂ω ∂ω⎛ ⎞∂ω ∂ω∂ ∂ ∂ ∂⎪ξ η = − −⎜ ⎟⎜ ⎟⎨ ⎜ ⎟∂η ∂ξ ∂ξ ∂η ∂η ∂ξ ∂ξ ∂η⎝ ⎠⎪ ⎝ ⎠⎩

⎫⎛ ⎞∂ω ∂ω⎛ ⎞∂ω ∂ω∂ ∂ ∂ ∂ ⎪+ − + − +⎜ ⎟⎜ ⎟ ⎬⎜ ⎟∂η ∂ξ ∂ξ ∂η ∂η ∂ξ ∂ξ ∂η⎝ ⎠ ⎪⎝ ⎠⎭

 

(3.48) 

The integral e e
i

e
d

Ω

ω Ω∫∫  in (3.36) can be interpreted as the part of the area of 

element e that is associated with node i.  Summation of all such areas of elements that 

connect at node i defines the total area that is associated with node i (Figure 3.4). 

Therefore, one can express the area associated with a node i as 

( )

N me
e

i i
e N m 1 1e

A A
⋅

= ⋅ − +

= ∑  (3.49) 

where 

e e e
i i

e
A d

Ω

= ω Ω∫∫  = part of the area of element e that is associated with node i, (L2); 

Ai = total area associated with a node i, (L2). 

To be able to solve equation (3.10) numerically, it is also necessary to discretize 

the vertical flows, subsidence, stream-groundwater interaction, lake-groundwater 

interaction and tile drains/subsurface irrigation terms as well as boundary and initial 

conditions.  In the following sections, the temporal and spatial discretization of these 

terms will be discussed.   
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3.1.3. Vertical Flows when Aquifers are Separated by an Aquitard 

The head difference between the aquifer layer in consideration (i.e. layer m) and 

the upper adjacent layer (i.e. layer m-1) is expressed in the finite element notation as 

( )

t 1 t 1 t t
b ti ii i N i i N

t 1 t t
b b tt 1 i i ii N i i Nu

i t 1 t t
t b ti i ii i i N

t t
b ti ii i N

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

+ +
− −

+
+ − −

+
−

−

⎧ − ≥ >
⎪
⎪ − < >⎪⎪Δ = ⎨

− ≥ =⎪
⎪
⎪ < =⎪⎩

 (3.50) 

where  

hi = head at node i, (L); 

hi-N = head at upper adjacent node, (L); 

bi
z  = bottom elevation of the aquitard at node i, (L); 

ti
z  = top elevation of the aquitard at node i, (L); 

t = index for previous time step, (dimensionless); 

 

e1 
e5 

e4 

e3 

e2 

1e
iα

2e
iα

3e
iα

4e
iα

5e
iα

i 

Figure 3.4  Total area that is associated with node i 
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t+1 = index for present time step, (dimensionless). 

It should be noted that the decision on how to compute ( )t 1u
ih

+
Δ  in (3.50) is based 

on the known head values at time step t.  During the development of IWFM, it has been 

observed that using the unknown head values at time step t+1 to perform the above 

computations creates convergence problems.  On the other hand, the formulation given in 

equation (3.50) results in robust solutions.   

Similarly, the head difference between the aquifer in consideration (i.e. layer m) 

and the lower adjacent layer (i.e. layer m+1) can be expressed in the finite element 

notation as 

( )

t 1 t 1 t t
t bi ii i N i i N

t 1 t t
t t bt 1 i i ii N i i Nd

i t 1 t t
t t bi i ii i i N

t t
t bi ii i N

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

+ +
+ +

+
+ + +

+
+

+

⎧ − ≥ ≥
⎪
⎪ − = ≥⎪⎪Δ = ⎨

− ≥ <⎪
⎪
⎪ = <⎪⎩

 (3.51) 

Substituting (3.50) and (3.51) into equation (3.10), one can express the vertical flow 

terms as 

( ) ( )
( )

( ) ( )

e

ee

N m t 1u e e
i N i i

e N m 1 1

t 1u
i N i i

H m 2 L h d

H m 2 L h A

⋅ +
−

= ⋅ − + Ω

+
−

− Δ ω Ω

= − Δ

∑ ∫∫

 

(3.52)
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( ) ( )
( )

( ) ( )

e

ee

N m t 1d e e
L i N i i

e N m 1 1

t 1d
L i N i i

1 H m N L h d

1 H m N L h A

⋅ +
+

= ⋅ − + Ω

+
+

⎡ ⎤− − Δ ω Ω⎣ ⎦

⎡ ⎤= − − Δ⎣ ⎦

∑ ∫∫

 

(3.53) 

 

3.1.4. Vertical Flows when Aquifers are not Separated by an Aquitard 

As in the previous section, the head difference between the aquifer layer in 

consideration and the upper adjacent layer can be expressed in finite element notation as 

( )

t 1 t 1 t t
i i N i k i N ki i

t 1 t t
t 1 k i N i k i N ki i iu

i t 1 t t
i k i k i N ki i i

t t
i k i N ki i

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

+ +
− −

+
+ − −

+
−

−

⎧ − ≥ >
⎪
⎪ − < >⎪Δ = ⎨

− ≥ =⎪
⎪
⎪ < =⎩

 (3.54) 

where 

ki
z  = elevation of the interface between the aquifer in consideration and 

the upper adjacent aquifer layer at node i, (L). 

Similarly, one can express the discretized head difference between the aquifer and 

the lower adjacent aquifer layer as 

( )

t 1 t 1 t t
k ki ii i N i i N

t 1 t t
k k kt 1 i i ii N i i Nd

i t 1 t t
k k ki i ii i i N

t t
k ki ii i N

h h if   h z ; h z

z h if   h z ; h z
h

h z if   h z ; h z

0 if   h z ; h z

+ +
+ +

+
+ + +

+
+

+

⎧ − ≥ ≥
⎪
⎪ − = ≥⎪⎪Δ = ⎨

− ≥ <⎪
⎪
⎪ = <⎪⎩

 (3.55) 
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3.1.5. Land Subsidence 

The expression for the rate of flow out of storage due to land subsidence, qsd, is 

already given in previous chapter.  Utilizing this expression and the approximate head 

field from equation (3.2), qsd at an aquifer layer m can approximately be expressed as  

( )

N m
j'

sd s j Lj
j N m 1 1

h
q S m 1, , N

t

⋅

= ⋅ − +

∂
≅ ω =

∂∑ "  (3.56) 

Equation (3.56) is the spatially discretized version of the rate of flow out of 

storage due to land subsidence.  To discretize (3.56) in time, IWFM uses the 

methodology described by Leake and Prudic (1988): 

( ) ( ) ( )
( )

t 1 t t t
N m t j c c jj jt 1 ' t

sd s se o jj j j
j N m 1 1

h h h h
q S S b

t t

+
⋅

+

= ⋅ − +

⎧ ⎫− −⎪ ⎪= + ω⎨ ⎬Δ Δ⎪ ⎪⎩ ⎭
∑  (3.57) 

where 

( )
t t+1 t

se o j cj j j
t

'
s j

t t+1 t
si o j cj j j

S b if h h

S

S b if h h

⎧ >
⎪⎪= ⎨
⎪ ≤⎪⎩

 (3.58) 

se j
S  = elastic specific storage at node j, (1/L); 

si j
S  = inelastic specific storage at node j, (1/L); 

o j
b  = the thickness of the interbed at node j, (L); 

c j
h  = pre-consolidation head at node j, (L). 
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Multiplying (3.57) by element shape functions, e
i

ω , integrating over individual 

elements and utilizing the mass lumping technique previously, one obtains 

( )
( ) ( ) ( )t 1 t t tN me t i c c ii it 1 e e ' t

sd s se o ii i i i
e N m 1 1 ee

h h h h
q d S S b A

t t

+⋅
+

= ⋅ − + Ω

⎧ ⎫− −⎪ ⎪ω Ω ≅ +⎨ ⎬Δ Δ⎪ ⎪⎩ ⎭
∑ ∫∫  (3.59) 

Once the groundwater flow equation is solved for a time step, the total 

compaction at a node can be computed by inserting the change in head, t 1 t 1 t
i ii

h h h+ +Δ = − , 

into expressions for the elastic and inelastic change in the interbed thickness given in 

previous chapter, and summing the elastic and inelastic compactions: 

t 1 t 1 t 1
o se sii i i

b b b+ + +Δ = Δ + Δ  (3.60) 

t 1 t 1 t
se i se oi i i

b h S b+ +Δ = −Δ  (3.61) 

t 1 t 1 t
si i si oi i i

b h S b+ +Δ = −Δ  (3.62) 

Finally, the thickness of the interbed at a node can be computed by 

t 1 t t 1
o o oi i i

b b b+ += − Δ  (3.63) 

In (3.63), the change in the interbed thickness, t 1
oi

b +Δ , is subtracted from the 

previous thickness of the interbed, t
oi

b , since a positive value represents compaction.  

If an inelastic compaction occurs, it is also necessary to modify the pre-

compaction head.  In this case, the pre-compaction head is assigned the new head at the 

groundwater node: 
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t t 1 t
c i ci i

t 1
ci

t 1 t 1 t
i i ci

h if h h

h

h if h h

+

+

+ +

⎧ ≥
⎪⎪= ⎨
⎪ <⎪⎩

 (3.64) 

 

3.1.6. Stream-Groundwater Interaction 

The expression for stream-groundwater interaction, Qsint, that occurs at a section 

of the stream represented by a stream node is given in previous chapter.  In IWFM, it is 

required that a stream node coincides with a groundwater node.  Utilizing the expression 

for Qsint as given in previous chapter, one can write 

( )

( )
( ) ( )

( )

t 1
sint

s s
s

t 1 t 1
N m s b j bj s j jj

s s j
j N m 1 1 s j

Q
x x , y y

A

C max h , h max h ,h
x x , y y

A

+

+ +
⋅

= ⋅ − +

δ − −

⎡ ⎤−⎢ ⎥⎣ ⎦≅ δ − − ω∑ (3.65)

 

where 

s j
C  = stream bed conductance at groundwater node j, (L2/T); 

s j
h  = stream surface elevation at groundwater node j, (L); 

b j
h  = elevation of the stream bottom at groundwater node j, (L); 

s j
A  = effective area of the stream segment at groundwater node j, (L2).  

Equation (3.65) is valid only at the groundwater nodes where a stream node 

exists.  Mathematically, this is represented by multiplying by the dirac delta function, 

( )s sx x , y yδ − − , as shown in equation (3.65).  Furthermore, (3.65) is defined for all 



 3-30

aquifer layers only for the completeness of the mathematical derivation.  In reality, 

stream nodes coincide with only the groundwater nodes at the top most layer (i.e. m=1) 

and (3.65) vanishes for other aquifer layers (i.e. Lm 2, , N= " ).   

After multiplying (3.65) by the element shape functions, e
iω  and integrating over 

individual elements, one obtains 

( )
( )

( ) ( )
( )

( )

( ) ( )

t 1N me
e esint

s s i
e N m 1 1 see

t 1 t 1
N mes b i bi s i ii e e

s s i
e N m 1 1s eei

t 1 t 1
s b i bi s i ii

Q
x x , y y d

A

C max h ,h max h ,h
x x , y y d

A

C max h ,h max h ,h

+⋅

= ⋅ − + Ω

+ +
⋅

= ⋅ − + Ω

+ +

δ − − ω Ω

⎡ ⎤−⎢ ⎥⎣ ⎦= δ − − ω Ω

⎡ ⎤= −⎢ ⎥⎣ ⎦

∑ ∫∫

∑ ∫∫

(3.66)

 

Due to the expressions given in (3.40) and (3.44), the following equivalence is 

used in (3.66): 

( )
( )

N me
e e

s s s ii
e N m 1 1 ee

A x x , y y d
⋅

= ⋅ − + Ω

= δ − − ω Ω∑ ∫∫  (3.67) 

 

3.1.7. Lake-Groundwater Interaction 

The expression for lake-groundwater interaction, Qlkint, that occurs through an 

effective area of the lake represented by a lake node is given in previous chapter.  In 

IWFM, it is required that a lake node coincides with a groundwater node.  Utilizing the 

expression for Qlkint as given in previous chapter, one can write 
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( )

( )
( ) ( )

( )

t 1
lkint

lk lk
lk

t 1 t 1
N m lk blk j blkj lk j j

lk lk j
j N m 1 1 lk j

Q
x x , y y

A

C max h ,h max h ,h
x x , y y

A

+

+ +
⋅

= ⋅ − +

δ − −

⎡ ⎤−⎢ ⎥⎣ ⎦≅ δ − − ω∑
 

(3.68)

 

where 

lk j
C  = lake bed conductance at groundwater node j, (L2/T); 

lkh  = lake surface elevation, (L); 

blk j
h  = elevation of the lake bottom at groundwater node j, (L); 

lk j
A  = effective area of the lake at groundwater node j, (L2).  

After multiplying (3.68) by the element shape functions, e
iω  and integrating over 

individual elements, one obtains 

( )
( )

( ) ( )
( )

( )

( ) ( )

t 1N me
e elkint

lk lk i
e N m 1 1 lkee

t 1 t 1 N melk blk i blki lk i i e e
lk lk i

e N m 1 1lk eei

t 1 t 1
lk blk i blki lk i i

Q
x x , y y d

A

C max h , h max h ,h
x x , y y d

A

C max h ,h max h ,h

+⋅

= ⋅ − + Ω

+ + ⋅

= ⋅ − + Ω

+ +

δ − − ω Ω

⎡ ⎤−⎣ ⎦= δ − − ω Ω

⎡ ⎤= −⎣ ⎦

∑ ∫∫

∑ ∫∫

(3.69)

 

Due to the expressions given in (3.40) and (3.44), the following equivalence is 

used in (3.69): 

( )
( )

N me
e e

lk lk lk ii
e N m 1 1 ee

A x x , y y d
⋅

= ⋅ − + Ω

= δ − − ω Ω∑ ∫∫  (3.70) 
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In equations (3.68)-(3.69), the lake surface elevation, t 1
lkh + , appears without the 

subscript for the corresponding groundwater node.  This is due to the fact that the 

changes in the lake surface elevation over an individual lake are assumed to be negligible 

in IWFM.  For this reason, the same lake surface elevation prevails for all lake nodes that 

represent an individual lake.  

3.1.8. Tile Drains and Subsurface Irrigation 

Similar to stream-groundwater interaction and lake-groundwater interaction, the 

term for the tile drains/subsurface irrigation can also be discretized as follows: 

( )

( )
( )

( )

t 1
td

td td
td

t 1
N m td td jj j

td td j
j N m 1 1 td j

Q
x x , y y

A

C z h
x x , y y

A

+

+
⋅

= ⋅ − +

δ − −

−
≅ δ − − ω∑

 

(3.71)

 

where 

td j
C  = conductance of the interface material between the tile 

drain/subsurface irrigation system at groundwater node j, (L2/T); 

td j
z  = elevation of the tile drain or the head at the subsurface irrigation 

system, (L); 

td j
A  = effective area through which tile drain outflow or subsurface 

irrigation inflow at groundwater node j is occurring, (L2).  

After multiplying (3.71) by the element shape functions, e
iω  and integrating over 

individual elements, one obtains 
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( )
( )

( )
( )

( )

( )

t 1N me
e etd

td td i
e N m 1 1 tdee

t 1 N metd td ii i e e
td td i

e N m 1 1td eei

t 1
td td ii i

Q
x x , y y d

A

C z h
x x , y y d

A

C z h

+⋅

= ⋅ − + Ω

+ ⋅

= ⋅ − + Ω

+

δ − − ω Ω

−
= δ − − ω Ω

= −

∑ ∫∫

∑ ∫∫  (3.72) 

and 

( )
( )

N me
e e

td td td ii
e N m 1 1 ee

A x x , y y d
⋅

= ⋅ − + Ω

= δ − − ω Ω∑ ∫∫  (3.73) 

 

3.1.9. Initial Conditions 

The solution of equation (3.10) requires the knowledge of groundwater head 

values at the previous time step, t.  Therefore, for the first time step, the head values at 

t 0=  need to be defined by the user ( i.e. initial head values t 0
ih = ).  

 

3.1.10. Boundary Conditions 

Boundary conditions are also required to solve (3.10).  Boundary conditions, as 

well as initial conditions, constrain the problem and make solutions unique.  Boundary 

conditions are not only necessary in solving the groundwater equation, but the accuracy is 

important as well.  If inconsistent or incomplete boundary conditions are specified, the 

problem is ill defined (Wang and Anderson, 1982). 
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IWFM has the functionality to incorporate the following boundary conditions into 

the groundwater equation: (i) specified flux (Neumann), (ii) specified head (Dirichlet), 

(iii) rating table and (iv) general head.  These boundary conditions can be constant over 

time or time-variant.  In the following sections, the implementation of these boundary 

conditions into the numerical solution procedure will be discussed. 

 

3.1.10.a. Specified Flux (Neumann) 

In a finite element representation the specified flux value is multiplied by element 

shape functions and integrated over the element face for which the flux is specified: 

[ ]t 1 e e e e
e i i

e e
q d f x, y, (t 1) t d+

Γ
Γ Γ

ω Γ = − + ⋅ Δ ω Γ∫∫ ∫∫  (3.74) 

In IWFM, [ ] e e
i

e
f x, y, (t 1) t d

Γ

− + ⋅Δ ω Γ∫∫ is the boundary flow specified by the user and 

evaluated at time ( )t 1 t+ ⋅Δ .  Equation (3.74) replaces the second integral term of 

equation (3.10). 

 

3.1.10.b. Specified Head (Dirichlet) 

In the case that the head is specified at a finite element node r, the rth equation in 

the system of equations given in (3.10) becomes redundant.  There is no longer a 

necessity to solve this equation since the head t 1
rh +  at node r is known.  Therefore, this 

equation is dropped from the system of equations. 
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3.1.10.c. Rating Table 

This is a special type of specified flow boundary condition where the boundary 

flow is a function of the head.  The relation between the boundary flow and the head is 

specified by the user as a rating table.  The finite element representation of the rating 

table type boundary condition is expressed in IWFM as 

t 1 e e t e e
e i i i

e e
q d f h d+

Γ
Γ Γ

⎡ ⎤ω Γ = − ω Γ⎣ ⎦∫∫ ∫∫  (3.75) 

In IWFM, t e e
i i

e
f h d

Γ

⎡ ⎤− ω Γ⎣ ⎦∫∫  is the head dependent boundary flow specified by the 

user through a rating table.  The head value from the previous time step is used to 

compute the flow rate at the boundary node. 

 

3.1.10.d. General Head 

The general head boundary inflow at a finite element node r can be expressed as 

( )t 1 t 1 t 1r r
GHB GHB rr

r

K AQ h h
d

+ + += −  (3.76) 

where 

GHBr
Q  = general head boundary flow at node r, (L3/T); 

Kr = hydraulic conductivity of the aquifer at node r, (L/T); 

Ar = cross-sectional area at node r that flow passes through, (L2); 

dr = distance between the boundary node r and the location of the 

known head, (L); 

hr = head value at the boundary node r, (L); 
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hGHB = head at the nearby surface water body or aquifer, (L); 

t = index for time step, (dimensionless). 

When general head type boundary condition is defined at node r, equation (3.76) 

is subtracted from the rth equation of the equation system (3.10). 

 

3.2. Stream Flows 

Equations given in previous chapter regarding the stream flows are already in 

algebraic form.  Therefore, they are ready to be coupled with the discretized groundwater 

equation described in the preceding sections.  The main stream flow equation can be re-

written for the present time step as 

( ) ( ) ( )t 1 t 1 t 1 t 1 t 1
s s s b i bi i in bdiv i s i ii i i

Q h Q Q C max h , h max h ,h 0+ + + + +⎡ ⎤− + + − =⎢ ⎥⎣ ⎦
 (3.77) 

The explicit expression for the stream-groundwater interaction, t+1
sinti

Q , has been 

substituted into (3.77).  The expressions for t 1
ini

Q +  and t 1
bdivi

Q +  are given in previous 

chapter.  Equation (3.77) is coupled and solved simultaneously with equation (3.10) for 

stream surface elevation, t 1
si

h + , and groundwater head at the stream node, t 1
ih + . 

 

3.3. Lakes 

The conservation equation for lake storage given in previous chapter is discretized 

as 
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( ) ( )

{

( ) ( ) }

t 1 t
lk lk lk lk t 1 t 1 t 1

brlk inlk lko

Nlk
t 1 t 1

lk lklk lki ii i
i 1

t 1 t 1
lk blk i blki i ilk

S h S h
Q Q Q

t

P A EV A

C max h ,h max h ,h 0

+
+ + +

+ +

=

+ +

−
− − +

Δ

− −

⎡ ⎤− − =⎢ ⎥⎣ ⎦

∑  

(3.78)

 

In (3.78), the explicit expression for the lake-groundwater interaction, t+1
lkinti

Q , has 

been used.   

The total evaporation from the lake area represented by a lake node, t 1
lk lki i

EV A+ , is 

limited by the amount of water available at that lake node.  This is represented in IWFM 

by the following formulation: 

( ) ( )lk lkt 1 t 1 t 1 t 1 t 1i i
lk lk lk lk lk lk brlk inlki i i i i

lk

A A
EV A max h b ,0 P A Q Q

t A
+ + + + +≤ − + + +

Δ
 (3.79) 

Equation (3.79) suggests that the effect of precipitation and inflows to the water 

storage at a lake node is considered before the computation of evaporation.  Also, the last 

term of equation (3.79) suggests that the inflows into the lake from diversions, bypasses 

and upstream lakes are distributed among the lake nodes evenly.  

Equation (3.78) is valid when the lake surface elevation is less than the pre-

specified maximum lake surface elevation, lkmax
h , or when the outflow from lake, t 1

lkoQ + , 

is zero.  If the lake surface elevation exceeds the maximum lake surface elevation, simply 

assigning t 1
lkh +  to lkmax

h  does not satisfy equation (3.78) and violates the requirement for 
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the conservation of mass.  In order to compute the lake outflow and still conserve mass 

by keeping lake elevation at its maximum, IWFM utilizes an alternative method. 

Assuming that the groundwater head value is known, a function, Flk, can be 

defined as equal to (3.78) less t 1
lkoQ + : 

( ) ( ) ( )

{

( ) ( ) }

t 1 t
lk lk lk lkt 1 t 1 t 1

lk lk brlk inlk

Nlk
t 1 t 1

lk lklk lki ii i
i 1

t 1 t 1
lk blk i blki i ilk

S h S h
F h Q Q

t

P A EV A

C max h ,h max h ,h

+
+ + +

+ +

=

+ +

−
= − −

Δ

− −

⎡ ⎤− −⎢ ⎥⎣ ⎦

∑  (3.80) 

Equating (3.80) to zero and solving is equivalent to finding its root with respect to 

t 1
lkh + .  Figures 3.5.a and 3.5.b show two possible cases when (3.80) is plotted as a 

function of t 1
lkh + .  The dashed parts of the curves represent Flk when lkmax

h  is assumed to 

be large enough so that it does not have an effect on Flk.  However, in reality, Flk is not 

defined beyond lkmax
h .  When the root of (3.80) is below lkmax

h  (Figure 3.5.a), lake 

outflow, t 1
lkoQ + , is zero and the computed root also satisfies (3.78).  On the other hand, 

when the root of Flk is above lkmax
h  (Figure 3.5.b), then t 1

lkoQ +  is non-zero.  IWFM uses an 

iterative solution technique (namely, Newton-Raphson method which is explained later in 

this chapter) to find the root of (3.80).  This method requires that the gradient of the 

function whose root is being sought for is non-zero and finite.  In the case depicted in 

Figure 3.5.b, however, the gradient of Flk at lkmax
h  is infinite.  In this case, IWFM 
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lkmax
h

t 1
lkh +  

lkF  

(a) Lake elevation does not exceed the maximum lake surface elevation 

Figure 3.5 Plots of possible lake storage functions and the 
modified function when lake elevation exceeds the 
maximum elevation 

lkmax
h

t 1
lkh +  

lkF

(c) Modified function, Glk, when lake elevation exceeds the 
maximum elevation 

lkmaxh − ε

Glk 

t 1
lkoQ +

(b) Lake elevation exceeds the maximum lake surface elevation 

lkmax
h

t 1
lkh +  

lkF  

t 1
lkoQ +
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modifies the function Flk in the vicinity of lkmax
h  so that the gradient of the modified 

function will be non-zero and finite and its root is guaranteed to be equal to lkmax
h (see 

Figure 3.5.c): 

t 1
lk lk lkmax

*
lk

t 1
lk lk lkmax

F if h h

F

G if h h

+

+

⎧ ≤ − ε
⎪⎪= ⎨
⎪ > − ε⎪⎩

 (3.81) 

where 

( )
t 1

lk lkmax
lk lk lkmax

h h
G F h 1

+⎡ ⎤− ε −
= × +⎢ ⎥

ε⎢ ⎥⎣ ⎦
; (3.82) 

*
lkF  = modified version of Flk. 

ε is chosen so that its value is small enough compared to the convergence criteria 

used for the iterative solution method.  In this case, lake outflow, t 1
lkoQ + , can be expressed 

as (Figure 3.5.c) 

( )t 1
lko lk lkmax

Q F h+ = −  (3.83) 

This approach allows for imposing the maximum lake elevation without 

disturbing the conservation of mass and the efficient use of numerical techniques for the 

solution of non-linear equations.  Equation (3.78) is coupled and solved simultaneously 

with (3.10) for lake elevation, t 1
lkh + , and groundwater head at lake node, t 1

ih + . 
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3.4. Surface Flows 

Mathematical models used in IWFM for surface flows, namely direct runoff and 

return flow have been presented in previous chapter.  These equations are already in 

algebraic form and they can readily be used in conjunction with the discretized 

conservation equations for groundwater, streams and lakes.  Expressions for the direct 

runoff and the return flow in a discretized time coordinate are listed below for the 

completeness of this document. 

 

3.4.1. Direct Runoff 

( )2t 1 t
t 1
r t 1 t

P t 0.2S1S
t P t 0.8S

+
+

+

Δ −
=

Δ Δ +
 (3.84) 

where 

Sr = direct runoff, (L/T); 

P = precipitation, (L/T); 

S = retention parameter modified with respect to the soil moisture (see 

chapter 2 for details), (L); 

Δt = length of time step, (T); 

t = index for time step, (dimensionless). 

 

3.4.2. Return Flow 

The return flow from urban indoors is assumed to be equal to the entire amount of 
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water used for urban indoors. 

The return flow from the agricultural lands and urban outdoors is computed using 

the following expression: 

t t t 1
t 1 t 1 t 1 t 1 t 1r r r f
f f cadj pp

D DR max I AW ET D , 0
t t

+
+ + + + +⎛ ⎞θ θ

= + + − − −⎜ ⎟
Δ Δ⎝ ⎠

 (3.85) 

where 

Rf = return flow of agricultural or urban outdoors applied water, (L/T); 

Dr = rooting depth, (L); 

θr = soil moisture content of the root zone, (dimensionless); 

θf = field capacity of the root zone, (dimensionless); 

fp
I  = infiltration of precipitation, (L/T); 

AW = agricultural or urban outdoors applied water, (L/T); 

ETcadj = crop evapotranspiration, (L/T); 

Dp = deep percolation, (L/T). 

t = index for time step, (dimensionless); 

Δt = length of time step, (T). 

In equation (3.85) the rooting depth, Dr, is a function of time to simulate the 

rotation of crops in a specified agricultural area from one year to another. 
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3.5. Soil Moisture in the Root Zone and Unsaturated Zone 

3.5.1. Moisture Routing in the Root Zone 

The conservation equation for the root zone is discretized in IWFM as follows: 

t 1 t 1 t t
t 1 t 1 t 1 t 1r r r r
f f cadj pp AW

D D I I ET D
t

+ +
+ + + +θ − θ

= + − −
Δ

 (3.86) 

where 

Dr = thickness of the root zone, (L); 

θr = soil moisture in the root zone, (L/L); 

fp
I  = infiltration of precipitation, (L/T); 

fAW
I  = infiltration of applied water, (L/T); 

cadjET  = evapotranspiration, (L/T); 

Dp = deep percolation, (L/T); 

t = index for time step, (dimensionless); 

Δt = length of time step, (T); 

The thickness of the root zone, rD , is taken as a function of time because the 

crops and their root zone depths are likely to change during the simulation period. 

In (3.86), infiltration of precipitation is computed based on the soil moisture at the 

previous time step, t: 

( )t 1 t
t 1 t 1
f t 1 tp

P t 0.2S1I P
t P t 0.8S

+
+ +

+

Δ −
= −

Δ Δ +
 (3.87) 

and 
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( )
( ) ( )

( )

t
r f wp t

max r f wp
T f wpt

t
max r f wp

2
S 1 for 2

2
S

 

S for 2    

⎧ ⎡ ⎤⎡ ⎤θ − θ − θ⎣ ⎦⎪ ⎢ ⎥ ⎡ ⎤− θ > θ − θ⎣ ⎦⎪ ⎢ ⎥⎡ ⎤η − θ − θ⎪ ⎣ ⎦⎣ ⎦= ⎨
⎪
⎪ ⎡ ⎤θ ≤ θ − θ⎪ ⎣ ⎦⎩

 (3.88) 

The ET rate is computed based on the soil moisture level from the previous time 

step, infiltration of precipitation and the total applied water. 

( )t 1 t 1 *
cadj cadjET ET+ += θ  (3.89) 

and 

( )t t t 1 t 1
r r f agp*

t
r

D I AW t

D

+ +θ + + Δ
θ =  (3.90) 

Equations (3.89) and (3.90) physically represent that the soil moisture that is 

already stored in the root zone along with the additional soil moisture due to the 

precipitation and applied water are available for plant consumption, i.e. for ET purposes, 

at time step t+1.  (3.90) also reveals the assumption that the entire volume of applied 

water is available for ET purposes. 

To compute t 1
r
+θ  in equation (3.86), it is also necessary to compute t 1

pD + .  In 

IWFM, deep percolation at time step t+1, t 1
pD + , is computed using one of the two 

methods (i.e. physically-based method or using deep percolation fraction): 
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( )

4**
**

s f
T

t **
r ft 1 **

p Dp f

K   if with physically-based method

D
D f if with deep percolation fraction

t

0   otherwise

+

⎧ ⎛ ⎞θ⎪ θ > θ⎜ ⎟
η⎪ ⎝ ⎠

⎪
⎪
⎪ θ − θ⎪= θ > θ⎨ Δ⎪
⎪
⎪
⎪
⎪
⎪
⎩

 (3.91) 

and 

( )t t t 1 t 1 t 1 *
r r f ag cadjp**

t
r

D I AW ET t

D

+ + +⎡ ⎤θ + + − θ Δ⎣ ⎦θ =  (3.92) 

Equation (3.91) reveals that deep percolation is computed as a non-zero value 

only if the soil moisture is greater than the field capacity; i.e. **
fθ > θ .  If the soil 

moisture is below the field capacity, there will not be drainage due to gravitation and 

deep percolation will be zero. 

Once adjusted ET and deep percolation are computed, the return flow from 

applied water can be computed using equation (3.85) and the infiltration of applied water 

can be calculated as  

t 1 t 1 t 1
f fAW

I AW R+ + += −  (3.93) 

Equation (3.93) is used for the computation of infiltration of both urban and 

agricultural application water.  The definitions of the terms used in (3.87)-(3.93) are 

given in previous chapter.  

Finally, the soil moisture at time step t+1, t 1
r
+θ , can be calculated from (3.86) 
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after the substitution of equations (3.87), (3.89), (3.91) and (3.93).   

A flowchart of the computation of the flow and soil moisture in the root zone is 

given in Figure 3.6. 

Currently, there are restrictions imbedded in the computation of soil moisture to 

retain the physical characteristics of the root zone.  IWFM restricts the flow into the root 

zone so that the initial estimate of the soil moisture does not exceed the total porosity.  

The inequality that represents this constraint is 

( )t t 1 t 1
r f f Tt p AW

r

t I I
D

+ +Δ
θ + + ≤ η  (3.94) 

If the flow into the root zone is large enough so that the soil moisture content 

violates the restriction stated in equation (3.94), the amount of flow exceeding the 

restriction is expressed as 

( ) ( )
t

t 1 t 1 t 1 t r
f f r Tin p AW

DexQ I I θ η
t

+ + += + + −
Δ

 (3.95) 

The inflow that exceeds the maximum allowable amount ( t 1
inexQ + ) is assumed to stay on 

the ground surface, and added to the direct runoff and return flow, proportionally: 

t+1
fpt t t+1

r,new r in t+1 t 1
f fp AW

I
S S exQ

I I +

⎛ ⎞
⎜ ⎟= + ×
⎜ ⎟+⎝ ⎠

 (3.96) 

t+1
ft+1 t+1 t+1 AW

f,new f in t+1 t 1
f fp AW

I
R R exQ

I I +

⎛ ⎞
⎜ ⎟= + ×
⎜ ⎟+⎝ ⎠

 (3.97) 
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Figure 3.6  Flowchart for the simulation of the soil moisture in the root zone
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Once the excess water has been added to the runoff and return flow, the infiltration of 

rainfall and applied water are recomputed to reflect the effect of adjustments on the 

routing of moisture in the root zone: 

t 1
fpt 1 t 1 t 1

f ,new f in t 1 t 1p p
f fp AW

I
I I exQ

I I

+
+ + +

+ +

⎛ ⎞
⎜ ⎟= − ×
⎜ ⎟+⎝ ⎠

 (3.98) 

t 1
ft 1 t 1 t 1 AW

f ,new f in t 1 t 1AW AW
f fp AW

I
I I exQ

I I

+
+ + +

+ +

⎛ ⎞
⎜ ⎟= − ×
⎜ ⎟+⎝ ⎠

 (3.99) 

 

3.5.2. Soil Moisture Routing in the Unsaturated Zone 

The conservation equation that models the vertical movement of soil moisture in 

the unsaturated zone is discretized in IWFM as follows: 

4t 1 t t 1
u,m u,m u,mt t+1

m in,m s,m
T,m

D Q K
t

+ +⎛ ⎞θ − θ θ
= − ⎜ ⎟⎜ ⎟Δ η⎝ ⎠

 (3.100) 

where 

Dm = thickness of layer m, (L); 

u,mθ  = soil moisture in the mth unsaturated layer, (L/L); 

Δt = length of time step, (T); 

Qin,m = inflow into unsaturated layer m from layer m-1, (L/T); 

Ks,m = saturated hydraulic conductivity of layer m, (L/T); 

ηT,m = total porosity of unsaturated layer m, (L/L); 

t = time step, (dimensionless); 

m = unsaturated layer number, (dimensionless). 
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Due to the non-linearity of equation (3.100), the conservation equation is solved 

for t 1
u,m
+θ , iteratively.  IWFM uses Newton’s method to solve for the soil moisture in the 

unsaturated layer m (Gerald and Wheatley, 1994): 

( ) ( )
( )
( )

kt+1
u,mk 1 kt+1 t+1

u,m u,m kt+1
u,m

F

F'

+
⎡ ⎤θ⎢ ⎥⎣ ⎦θ = θ −
⎡ ⎤θ⎢ ⎥⎣ ⎦

 (3.101) 

where 

( ) ( ) ( )
4k kt+1 t+1 t

k u,m u,m u,mt+1 t+1 t
u,m in,m s,m m

T,m
F Q K D

t

⎛ ⎞ ⎛ ⎞θ θ − θ⎜ ⎟ ⎜ ⎟⎡ ⎤θ = − −⎜ ⎟ ⎜ ⎟⎢ ⎥ η Δ⎣ ⎦ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.102) 

( ) ( )
3 tk ks,mt+1 t+1 m

u,m u,m4
T,m

K DF' 4
t

⎡ ⎤ ⎡ ⎤θ = − θ −⎢ ⎥ ⎢ ⎥ Δ⎣ ⎦ ⎣ ⎦η
 (3.103) 

k = iteration level. 

Equation (3.101) is solved repeatedly until a user-specified convergence level is 

achieved; i.e. until ( ) ( )k 1 kt+1 t+1
u,m u,m

+
θ − θ  is less than a pre-defined value. 

The flowchart for the routing of moisture in a multi-layer unsaturated zone is 

illustrated in Figure 3.7.  As shown in this figure, the water that percolates through the 

root zone is the inflow to the first unsaturated layer.  First, the moisture content at the 

first unsaturated layer ( )t 1
u,1
+θ  is computed, iteratively.  The outflow, t 1

out,1Q + , can then be 

redefined as a function of ( )k 1t 1
u,1

++θ .  Based on the conservation of mass, t 1 t 1
out,2 out,1Q Q+ += .  

Therefore, the soil moisture in layer 2 and the flow out of layer 2 are simulated in the 
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Figure 3.7  Flowchart for the unsaturated flow simulation 

Unsaturated flow 
simulation
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( )k 0t+1 t
u,m u,mSet  
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t 1
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*Calculate the excess that will not 
percolate due to physical constraint;

*

t 1 t 1
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same manner as layer 1.  This procedure is performed for each layer until the net deep 

percolation into groundwater is calculated. 

Restrictions similar to those utilized for the simulation of soil moisture in the root 

zone are imbedded into the computation of flow and soil moisture when simulating the 

soil moisture in the unsaturated zone. 

When simulating the flow into and out of each layer, the following inequalities 

must be obeyed for all unsaturated layers modeled: 

t+1
u,m T,mθ ≤ η  (3.104) 

t 1
in,m u,mQ K+ ≤  (3.105) 

Given the scenario where the soil moisture exceeds the total porosity of 

unsaturated layer m (equation (3.104)), the excess soil moisture, ( )t+1
u,mexθ  is assumed to 

drain due to gravitational force and routed to unsaturated layer m+1, unless the layer is 

the last unsaturated layer within the system.  The last layer’s excess soil moisture is 

routed to the saturated groundwater below it. 

In the situation where the flow into unsaturated layer m exceeds the hydraulic 

conductivity specified for layer m (equation (3.105)), the excess inflow to unsaturated 

layer m, ( )t 1
in,mexQ +  is routed to the soil moisture in layer m−1.  However, in order for the 

excess water to be routed to a layer above, the soil moisture in layer m−1 must not exceed 

the total porosity value set ( )t 1
u,m 1 T,m 1
+

− −θ ≤ η .  In the circumstance where the soil in layer 

m-1 is saturated, the water is routed to layer m−2.  This process of routing the water in 

excess of the hydraulic conductivity to above layers occurs until there is an unsaturated 
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layer that has the capacity to hold the water.  Given that all layers are completely 

saturated, the excess water is routed to the surface, and is added to the surface runoff and 

return flow components (refer to equations (3.96) and (3.97)). 

 

3.6. Small Watersheds 

The conservation equation for the groundwater storage at a small watershed is 

discretized in IWFM using the implicit discretization method: 

( )t 1 t t 1 t 1 t 1
wg wg wp wg wgsS S D Q Q t+ + + += + − − Δ  (3.106) 

where 

Swg = groundwater storage within the small watershed boundary, (L3); 

Dwp = net deep percolation, i.e. recharge, to the groundwater storage 

within the small watershed domain, (L3/T); 

Qwg = subsurface outflow from the small watershed that contributes to the 

groundwater storage at the modeled area, (L3/T); 

Qwgs = contribution of groundwater storage to the surface flow at the small 

watershed, (L3/T); 

Δt = length of time step, (T); 

t = index for time step, (dimensionless). 

The net deep percolation, t 1
wpD + , is computed numerically using the same 

methodology described in the preceding section.  Subsurface outflow from the small 

watershed, t 1
wgQ + , and the contribution of groundwater storage to the surface flow at the 
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small watershed, t 1
wgsQ + , are computed as functions of the groundwater storage at the 

previous time step and the net deep percolation: 

( )t 1 t t 1
wg wg wg wpQ C S D t+ += + Δ  (3.107) 

( )t 1 t t 1
wgs ws wg wp wgtQ C S D t S+ +⎡ ⎤= + Δ −⎣ ⎦  (3.108) 

where 

Cwg = subsurface flow recession coefficient, (1/T); 

Cws = surface runoff recession coefficient, (1/T); 

Swgt = threshold value for groundwater storage within the small watershed 

above which groundwater at the small watershed contributes to 

surface flow, (L3). 

 

3.7. Solution of the System of Equations 

Simulation of the hydrological processes that are included in IWFM requires the 

simultaneous solution of three equations; namely groundwater flow equation, stream flow 

equation and the lake storage equation.  Spatial and temporal discretization of the 

groundwater, stream and lake equations result in a system of non-linear algebraic 

equations where the unknowns are the groundwater head ( )t 1h + , stream surface 

elevation ( )t 1
sh +  and the lake elevation ( )t 1

lkh +  at the present time step.  This system of 

equations can be represented in a matrix form as 

[ ]{ } { }t 1X F 0+ + =H  (3.109) 
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In (3.109), { }t 1+H  is the vector of unknowns that is generated by augmenting the 

unknown groundwater heads, stream surface elevations and the lake surface elevations at 

the present time step: 

{ }

1

NR

1

NLK

L

t 1
s

t 1
s

t 1
lk

t 1

t 1
lk

t 1
1

t 1
N N

h

h

h

h

h

h

+

+

+

+

+

+

+
⋅

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

#

#

#

H  (3.110) 

where 

NR = total number of stream nodes, (dimensionless); 

NLK = total number of lakes, (dimensionless); 

NL = number of aquifer layers, (dimensionless); 

N = number of finite element nodes in an aquifer layer, 

(dimensionless). 

Therefore, equation (3.109) represents a system of LNR NLK N N+ + ⋅  

equations.  The first NR equations are expressed as in (3.77), the (NR+1)th to 

(NR+NLK)th equations are expressed as in (3.78), and the rest of the equations are given 

in (3.10).   
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IWFM uses Newton-Raphson method in order to linearize the equation set (3.109)

.  This method utilizes the Taylor series expansion of (3.109) around starting values of 

unknowns and truncates the second and higher order terms.  Using the Newton-Raphson 

method, the rth equation of (3.109), rF , can be expressed as (Huyakorn and Pinder, 1983) 

( )L
kNR NLK N N k 1t 1 kr

i rt 1
i 1 i

Δ
+ + ⋅ ++

+
=

⎛ ⎞∂
=⎜ ⎟⎜ ⎟∂⎝ ⎠

∑ F H F
H

 (3.111) 

where 

{ }L Lr r 1 2 NR NLK N N 1 NR NLK N N, , , ,+ + ⋅ − + + ⋅= "F F H H H H  (3.112) 

and 

( ) ( ) ( )k 1 k 1 kt 1 t 1 t 1
i i iΔ

+ ++ + += −H H H  (3.113) 

In (3.111)-(3.113), k is the iteration level.  For Lr 1, , NR NLK N N= + + ⋅"  

equation (3.111) represents a system of linear equations that needs to be solved for 

( )k 1t 1
iΔ

++H .  This system of equation can be expressed in matrix notation as 

( ) { }k 1k t 1 kΔ
++⎧ ⎫⎡ ⎤ =⎨ ⎬⎣ ⎦ ⎩ ⎭

X H F  (3.114) 

The aim is to estimate the unknown values of t 1
i
+H , compute the components of 

the matrix k⎡ ⎤
⎣ ⎦X  and the vector { }kF  and solve the equation system (3.114) for 

( )k 1t 1
iΔ

++H .  The L2-norm of the difference vector is used to check the convergence: 
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( ) ( )L 2NR NLK N Nk 1 k 1t 1 t 1
i

2 i 1
H

+ + ⋅+ ++ +

=

⎡ ⎤
Δ = Δ⎢ ⎥

⎣ ⎦
∑H  (3.115) 

If the L2-norm given in (3.115) is not smaller than a pre-specified tolerance, the 

unknown values of t 1
i
+H  are re-estimated using (3.113), and the procedure is continued 

until convergence is achieved.  The components of k⎡ ⎤
⎣ ⎦X  and { }kF  are listed in 

Appendix A. 

The coefficient matrix k⎡ ⎤
⎣ ⎦X  in (3.114) is a sparse matrix.  The level of its 

sparseness depends on the numbering of groundwater, stream and lake nodes.  IWFM 

uses either the over-relaxation method combined with the Jacobi method (Gerald and 

Wheatley, 1994), or a modified pre-conditioned conjugate gradient method (Dixon et. al, 

2010) to solve the equation system in (3.114), iteratively.  The over-relaxation method 

will be explained in this document.  The details of the modified pre-conditioned 

conjugate gradient method are explained by Dixon et. al (2010).  

The over-relaxation method starts with an initial estimate to the solution vector, 

( )
rk 1t 1Δ

++
⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥

⎣ ⎦⎪ ⎪⎩ ⎭
H , where r is the iteration counter for the iterative solution of (3.114).  It 

should be noted that the iteration counter r is different than the iteration counter k.  Index 

k is the iteration counter for Newton-Raphson method which is used to solve a system of 

non-linear equations.  On the other hand, index r is the iteration counter for the matrix 

inversion method that is used to solve the matrix equation that is generated by a single 

iteration of the Newton-Raphson method. 
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With initial estimates, the ith equation of (3.114) can be solved for the new 

estimate of the unknown value: 

( )
( )L

rNR NLK N N k 1k k t 1
i i, j j

j 1r 1k 1 j it 1
i k

i,i

+ + ⋅ ++

=++ ≠+

⎡ ⎤
− Δ⎢ ⎥

⎣ ⎦
⎡ ⎤

Δ =⎢ ⎥
⎣ ⎦

∑F X H

H
X

 (3.116) 

Equation (3.116) is used to compute all the components of the solution vector, 

and the convergence between the initial estimates and the newly computed values is 

checked: 

( ) ( )
2r 1 rk 1 k 1t 1 t 1

i i
i

++ ++ +
⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟Δ − Δ ≤ ε⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ H H  (3.117) 

where Li 1, , NR NLK N N= + + ⋅" .  If the convergence criteria given in (3.117) is not 

satisfied for all unknowns, the over-relaxation method is used to update their values: 

( )

( ) ( ) ( )

*r 1k 1t 1
i

r r 1 rk 1 k 1 k 1t 1 t 1 t 1
i i i

+++

++ + ++ + +

⎡ ⎤
Δ⎢ ⎥

⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= Δ + β Δ − Δ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

H

H H H

 (3.118) 

where Li 1, , NR NLK N N= + + ⋅" .  In (3.118), ( )
*r 1k 1t 1

i

+++⎡ ⎤
Δ⎢ ⎥

⎣ ⎦
H  is the new estimate 

that will be used in the next iteration instead of ( )
r 1k 1t 1

i

+++⎡ ⎤
Δ⎢ ⎥

⎣ ⎦
H , and β is the relaxation 

parameter. 
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3.7.1. Compressed Storage of Matrices 

In order to decrease the computer storage requirements, IWFM only stores the 

non-zero components of the coefficient matrix k⎡ ⎤
⎣ ⎦X  (see Appendix A for expressions of 

non-zero components).  These values are stored in a one-dimensional array in order to 

decrease the array access times and, hence, computer run times. 

Storing only some of the components of a two-dimensional matrix in a one-

dimensional array requires the storage of locations of these components to be able to re-

construct the matrix.  The location of a non-zero component in the matrix k⎡ ⎤
⎣ ⎦X  depends 

on the node numbering in the model and the stream, lake and groundwater nodes that 

interact with each other.  As an example, consider Figure 3.8 where a hypothetical model 

domain with 2 aquifer layers is represented by 6 finite elements, 12 groundwater nodes, 5 

stream nodes and 1 lake.  Therefore, there are a total of 18 unknown parameters whose 

values are computed by solving the stream, lake and groundwater conservation equations 

simultaneously. 

A stream node is connected to a groundwater node and other stream nodes that are 

located directly upstream of it; a lake is connected to multiple groundwater nodes; a 

groundwater node is connected to an upper groundwater node, a lower groundwater node, 

surrounding groundwater nodes and a stream node or a lake.  The node connection 

scheme for the system shown in Figure 3.8 is tabulated in Table 3.1.  The global 
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Figure 3.8  Hypothetical model domain 
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unknown numbers are printed in bold and the corresponding stream node, groundwater 

node or lake numbers are printed in parentheses.   

Table 3.1 lists the locations of the non-zero components of the coefficient matrix 

k⎡ ⎤
⎣ ⎦X .  An “unknown number-connecting node” pair represents the row and column 

numbers of a non-zero component.  An “unknown number-unknown number” pair 

represents a component located on the diagonal of the matrix.  For instance, an unknown 

number of 10 and connecting node number 4 represents the component in the 10th row 

and the 4th column of the coefficient matrix (see Table 3.1).  This component is the 

derivative of the conservation equation written at groundwater node 4 with respect to the 

stream surface elevation at stream node 4.   

Table 3.1 lists the global unknown numbers and the connecting nodes as they are 

stored in IWFM.  For some groundwater nodes, a value of zero appears for upper or 

lower connecting groundwater nodes.  When IWFM encounters a value of zero, this 

means that there is no upper or lower aquifer layer for the groundwater node being 

considered.  

IWFM uses a one-dimensional array, { }JND , to store the information given in 

Table 3.1.  Another one-dimensional array, { }NJD , is used to store the index numbers in 

{ }JND , where information for a node, i.e. for a row of k⎡ ⎤
⎣ ⎦X , starts: 

{ }
( )P

( ) ( ) ( )k k kk
Unknown 2 Unknown 6 Unknown 18Unknown 1

row 2 of row 6 of row 18 of row 1 of 

JND 1,7 , 2,8,1,5 , , 6,10,12,11 , ,18,12,0,16,14,15,17

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭


�� 
���� 
��������
" "

X X XX

 (3.119)
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Connecting Nodes Connecting Nodes

Unknown 
Number GW Node

Upstream 
Node 1

Upstream 
Node 2

Unknown 
Number

GW 
Node 1

GW 
Node 2

GW 
Node 3

1 (s1) 7 (g1) 6 (lk1) 10 (g4) 12 (g6) 11 (g5)

2 (s2) 8 (g2) 1 (s1) 5 (s5)                          (b) Connecting nodes for lakes
3 (s3) 9 (g3) 2 (s2)
4 (s4) 10 (g4)
5 (s5) 8 (g2) 4 (s4)

          (a) Connecting nodes for stream nodes

Connecting Nodes

Unknown 
Number

Upper 
GW Node

Lower 
GW Node

Stream/Lake
Node 1

Stream/Lake
Node 2

Surrounding
GW Node 1

Surrounding
GW Node 2

Surrounding
GW Node 3

Surrounding
GW Node 4

Surrounding
GW Node 5

7 (g1) 0 13 (g7) 1 (s1) 8 (g2) 10 (g4)
8 (g2) 0 14 (g8) 2 (s2) 5 (s5) 10 (g4) 7 (g1) 9 (g3) 12 (g6)
9 (g3) 0 15 (g9) 3 (s3) 12 (g6) 10 (g4) 8 (g2)
10 (g4) 0 16 (g10) 4 (s4) 6 (lk1) 7 (g1) 8 (g2) 9 (g3) 12 (g6) 11 (g5)
11 (g5) 0 17 (g11) 6 (lk1) 10 (g4) 12 (g6)
12 (g6) 0 18 (g12) 6 (lk1) 10 (g4) 8 (g2) 9 (g3) 11 (g5)
13 (g7) 7 (g1) 0 14 (g8) 16 (g10)
14 (g8) 8 (g2) 0 16 (g10) 13 (g7) 15 (g9) 18 (g12)
15 (g9) 9 (g3) 0 18 (g12) 16 (g10) 14 (g8)
16 (g10) 10 (g4) 0 13 (g7) 14 (g8) 15 (g9) 18 (g12) 17 (g11)
17 (g11) 11 (g5) 0 16 (g10) 18 (g12)
18 (g12) 12 (g6) 0 16 (g10) 14 (g8) 15 (g9) 17 (g11)

(c) Connecting nodes for groundwater nodes

Table 3.1  Node connection scheme for the example shown in Figure 3.8
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{ } { }NJD 1 , 3 , , 15 , ,96= " "  (3.120) 

With the information stored in the arrays { }JND  and { }NJD , the coefficient 

matrix can be reconstructed.  For the example shown in Figure 3.8, the coefficient matrix 

k⎡ ⎤
⎣ ⎦X  has a total of 324 (= 18 ×  18) components.  The above methodology for storing 

information has a total of 222 components (102 components for { }JND , 18 components 

for { }NJD  and 102 components for the array that stores the actual values of non-zero 

components of k⎡ ⎤
⎣ ⎦X ).  This amounts to around 30% of savings in computer storage 

requirements even for a small problem as shown in Figure 3.8.  For larger problems, 

savings in storage requirements will be larger.  

Another two-dimensional matrix that arises due to the numerical methods used in 

IWFM is the conductance matrix (see equation (3.10)): 

( )
( )

e

ee

N m t 1t 1 e e e e
i, j i j

e N m 1 1
AT T d

⋅ ++

= ⋅ − + Ω

= ∇ω ∇ω Ω∑ ∫∫
K K

 (3.121) 

where L1 m N≤ ≤  and . ( )N m 1 1 i, j N m⋅ − + ≤ ≤ ⋅ . 

The components of t 1AT +⎡ ⎤
⎣ ⎦  are stored for each groundwater node.  As an 

example, consider the finite element mesh depicted in Figure 3.8.  For elements 1, 2, and 

3 of Figure 3.8, the element conductance matrices for the first aquifer layer will have the 

following structure: 
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e e e1 1 1
g ,g g ,g g ,g1 1 1 2 1 4
e e ee 1 1 11
g ,g g ,g g ,g2 1 2 2 2 4
e e e1 1 1
g ,g g ,g g ,g4 1 4 2

e1
g ,g1 4
e1
g ,g2 4
e1
g ,g4 44 4

AT AT AT

AT AT AT AT    

AT AT AT

AT

AT

AT

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 4

1

2

4

g g g

g

g

g

 (3.122) 

e e e e2 2 2 2
g ,g g ,g g ,g g ,g2 2 2 3 2 6 2 4
e e e e2 2 2 2
g ,g g ,g g ,g g ,g3 2 3 3 3 6 3 4e2
e e e e2 2 2 2
g6,g g

e2
g ,

,g g ,g g ,g2 6 3 6 6 6 4
e e e e2 2 2 2
g ,g g ,g g ,g g ,g4 2 4 3 4 6 4 4

g2 4

g ,g2 4

AT AT AT AT

AT AT AT AT
AT    

AT AT AT AT

AT AT

AT

AT AT

AT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2 3 6 4

2

3

g g g g

g

g e2

e2
g ,g2 4
e2
g ,g2 4

AT

AT

6

4

g

g

 (3.123) 

e e e3 3 3
g ,g g ,g g ,g4 4 4 6 4 5
e e ee 3 3 33
g ,g g ,g g ,g6 4 6 6 6 5
e e e3 3 3
g ,g g ,g g ,g5 4 5 6

e3
g ,g1 4
e3
g ,g2 4
e3
g ,g4 45 5

AT AT AT

AT AT AT AT    

AT AT AT

AT

AT

AT

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

4 6 5

4

6

5

g g g

g

g

g

 (3.124) 

In equations (3.122)-(3.124), the time step index t+1 is dropped for simplicity.  

Element conductance matrices will have the similar structure for other layers of the 

aquifer system except that the indexing will change with the changing node numbers.  

The component values are also likely to be different for each layer since the 

transmissivities at a vertical cross-section may differ.  IWFM stores the following 

components of matrices (3.122)-(3.124) in an augmented one-dimensional array: 
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{ } { 1 1
1 2 1 4

1 2 1 2 2
2 4 2 4 2 1 2 3 2 6

2 2 2
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e e e e e
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where { }AT  is the one-dimensional storage array for the non-zero elements of the 

conductance matrix [ ]AT .  As can be seen from (3.126), { }AT  stores the non-zero 

components of the global conductance matrix [ ]AT , excluding the diagonal components.  

As discussed earlier, the diagonal components of [ ]AT  are not stored due to the 

simplification performed in the derivation of the system of equations (refer to equations 

(3.31)-(3.35)).  IWFM uses the information stored in { }JND  and { }NJD  to reconstruct 

the two dimensional matrix [ ]AT  from the one-dimensional array { }AT . 

 

3.8. Usage of Parametric Grid 

To compute the matrix and the vector components appearing in equation (3.114) 

for groundwater nodes, it is necessary to define aquifer parameter values (namely 

horizontal and vertical hydraulic conductivities, specific storage coefficient, specific 

yield, interbed thickness, elastic and inelastic storage coefficients, and pre-compaction 
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head value) at each finite element node.  IWFM allows the user to define these values 

through input files. 

However, in most practical applications it is not possible to compile the required 

parameter values for each node of the finite element mesh.  Instead, sets of values 

measured at a small number of observation sites will be available.  Furthermore, the 

locations of these sites will generally not coincide with any of the nodes of the finite 

element mesh.  To overcome this problem, IWFM allows the user to interpolate the 

parameter values measured at a small number of locations in order to specify values at 

the nodes of the finite element mesh.  The interpolation is based purely on the geographic 

locations of the observation sites and the finite element nodes.  IWFM uses the term 

parametric node for an observation site in order to differentiate it from a finite element 

node.  A collection of parametric nodes forms the parametric mesh as opposed to finite 

element mesh.  A parametric mesh may consist of triangular and/or quadrilateral 

elements (Figure 3.9).  An individual parametric mesh can be used for specification of 

parameter values at finite element nodes of the entire model domain, or several 

parametric meshes covering smaller portions of the model domain can be utilized. 

The mathematical theory underlying the interpolation technique used in IWFM is 

similar to that of the finite element method discussed earlier in this chapter.  The 

continuous function of a particular parameter over a parametric element can be 

approximated by the discrete parameter values defined at the parametric nodes as 

( ) ( ) ( )
Nep

ep ep
ep ep i i

i 1

ˆx, y x, y x, y
=

φ ≅ φ = φ ω∑  (3.127) 

where 
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φep(x, y) = continuous function of a particular aquifer parameter over the 

parametric element ep;  

( )ep
ˆ x, yφ  = approximation for φep(x, y); 

ep
iφ  = parameter value at parametric node i; 

( )ep
i x, yω  = element shape function defined for the parametric node i; 

Nep = number of parametric nodes that define a parametric element; 3 for 

a triangular element and 4 for a quadrilateral element. 

The expressions for element shape functions, ( )ep
i x, yω , are given in section 3.1.1 

for both linear triangular and linear quadrilateral elements.  These expressions are also 

 

Finite element node 

Parametric node 

Figure 3.9  An example of parametric and finite element mesh system 
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valid for parametric linear elements.  Equation (3.127) reveals that, for a finite element 

node that is located in a parametric element, the parameter value at the finite element 

node can be expressed as a linear algebraic function of the parameter values at the 

surrounding parametric nodes.  If the coordinates of the finite element node is given as 

( )o ox , y , the parameter value at this node can be expressed by equation (3.127) as 

( ) ( )
Nep

ef ep ep
o o j i i o o

i 1

ˆ x , y x , y
=

φ = φ = φ ω∑  (3.128) 

where fe
jφ  is the value of the parameter at the finite element node j.  Therefore, 

( )ep
i o ox , yω  are the interpolating coefficients corresponding to each of the surrounding 

parametric nodes. 

The shape functions for a linear quadrilateral element are defined in ( ),ξ η  space 

instead of ( )x, y  space as given in equations (3.20)-(3.23).  Therefore, it is necessary to 

convert the coordinates of the finite element node ( )o ox , y  into ( )o o,ξ η  in order to 

define the interpolating coefficients for a quadrilateral parametric element.  This can be 

achieved by first solving equations (3.17) and (3.18) for ( )x, yξ  and ( )x, yη , 

simultaneously and substituting xo and yo into the resulting solutions to obtain ξo and ηo. 

 



4. Demand and Supply 

An important objective of IWFM is to simulate the water supply to meet a 

specified agricultural and urban demand.  This chapter explains the computation of urban 

and agricultural demand, simulation of water supply, and the water allocation process 

with respect to different land use types.  

 

4.1. Land Use 

IWFM has the capability to model flow processes over agricultural, urban, native 

and riparian lands.  The land use areas must be specified for every element within the 

model domain for the purpose of simulating unsaturated flow on an elemental basis.  The 

area of each crop, as well as urban, native and riparian lands are to be specified for each 

subregion in order to compute runoff, infiltration, soil moisture, and deep percolation 

based on land use information.   

In a hydrologic basin, the extent of the agricultural and urban areas defines a 

specific water demand that needs to be met by stream flow diversions and groundwater 

pumping.  Diverting stream flows and extracting water from the groundwater storage, and 

distributing it over the modeled area to meet the water demand, changes the natural 

runoff characteristics of the basin.  The approach taken in IWFM to model hydrologic 

processes based on each land use type plays a key role in the effectiveness of IWFM as a 

planning model.  With this approach, demand is computed or specified for agricultural 

and urban areas separately.  The allocation of surface water diversions and pumping to 

agricultural and urban lands is determined by defining the fraction of the specified 
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diversion and pumping that is intended for irrigation purposes, and designating the 

remaining portion for urban use.  Once stream flows are simulated, actual surface water 

diversions are computed based on the available stream flows, and applied to agricultural 

and urban areas according to user specified fractions to meet the appropriate demands.  

Groundwater pumping and recharge can be specified in several ways, but IWFM has the 

functionality to pump or recharge by element, based on the relative agricultural and urban 

areas within an element.  Similar to surface water diversions, groundwater pumping can 

also be distributed among agricultural and urban lands with respect to predefined 

fractions. 

 

4.2. Agricultural Demand 

Agricultural demand represents the water need for agricultural lands, and can be 

specified as an input, or computed during IWFM simulation.  To specify agricultural 

demand, historical or projected agricultural demand levels need to be defined for all 

modeled crops prior to simulation.  For agricultural demand to be computed internal to 

IWFM, historical or projected minimum soil moisture requirements (θmin), seasonal 

application efficiency (Effsa) for all crop types and the re-use coefficients for irrigation 

water in each subregion must be specified.   

The agricultural demand computation is based on the crop consumptive use of 

applied water (CUAW), seasonal application efficiency for each crop (Effsa) and the 

amount of re-used irrigation water.  CUAW is the applied water needed for optimum 

agricultural conditions where (i) adequate crop production is guaranteed by maintaining 

the standard conditions so that the crops will not experience water stress, (ii) soil 
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moisture losses as deep percolation are minimized and (iii) the minimum soil moisture 

requirements are met at all times.  These three goals can be achieved at the same time by 

ensuring that the soil moisture at the root zone stays between the field capacity and the 

minimum soil moisture requirement (since the minimum soil moisture requirements are 

defined for proper crop growth, it is expected that they lie between field capacity and half 

of the field capacity, based on the ET computations given in Chapter 2).  A schematic 

representation of root zone profile and the soil moisture interval at which the three goals 

listed above can be achieved simultaneously are depicted in Figure 4.1.  Therefore, when 

computing CUAW, i.e. the amount of water that needs to be applied to achieve optimum 

agricultural conditions, a soil moisture content in this interval should be taken as a target.  

A reasonable and economical choice would be to target the lower end of this interval 

 

fθ  

f0.5×θ  

minθ  

Soil moisture interval at which  
(i) ET = ETc,  
(ii) Dp = 0, 
(iii) minθ ≥ θ  

Figure 4.1  A schematic representation of the root zone profile 
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which is the minimum soil moisture requirement.  Writing the mass balance equation in 

the root zone given in Chapter 2, with a target soil moisture content at θmin, one obtains 

the following equation: 

t+1 t 1 t tD D+θ = θ ( )t 1 t 1 t 1
r min r rp f AW cpI CU ET+ ++ + − Δt+  (4.1) 

where 

Dr = thickness of root zone, (L); 

 irement, (L/L); 

he storage assuming that 

= 

  i.e. rate of application water 

= /T); 

Δt 

mensionless). 

hen s m qual to ETc rate and the deep 

percola

ons: 

θmin = minimum soil moisture requ

rpθ  = soil moisture that is already available in t

CUAW in the previous time steps were met, (L/L); 

infiltration of precipitatione, (L/T); fp
I  

AWCU = consumptive use of applied water,

required for optimum agricultural conditions, (L/T); 

evapotranspiration rate under standard conditions, (LcET  

= length of time step, (T); 

t = counter for time step, (di

W oil oisture is at θmin, the ET rate will be e

tion will be zero (Figure 4.1).  These conditions are reflected in equation (4.1).  

Solving (4.1) for t 1
AWCU + , one obtains the rate of applied water required for optimum 

agricultural conditi

( )t+1 t 1D +θ t 1 t t t 1
r min c r rp fpt 1

AW

ET t D I t
CU =    0

t

+ +

+
+ Δ − θ + Δ

≥
Δ

 (4.2) 
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Equation (4.2) guarantees that deep percolation will be zero.  Therefore, a portion 

of  will be used to meet the ET requirements (ETc in equation (4.2)) and the rest 

of 

t 1
AWCU +

it wi

 requir

ll increase the soil moisture content in the root zone that will be used to meet the 

ET ements in future time steps.  In IWFM, t 1CUAW
+  is computed for the total 

agricultural area in each subregion.  Therefore, weighted average values for θ  and ET  

for all crops modeled in the subregion are used in equat 2)

min c

ion (4. . 

The crop-area-weighted average of the minimum soil moisture in a subregion is 

( )( )

( )
i

i

n
t 1 t 1A+ +θ∑ min,i c

t 1
c

i 1
A +

=
∑

where 

θmin,avg = minimum soil moisture requirement (L/T); 

θmin,i = minimum soil moisture requirement of crop i, (L/T); 

Crop-area-weighted average for 

t 1 i 1
min,avg n
+ =θ =  (4.3) 

icA  = area of crop i, (L2); 

n = number of crops modeled, (dimensionless). 

t 1
c,avgET +t 1+  (cET ) can be computed in a similar way as 

expressed in equation (4.

l conditions as described earlier in this section.  In general, 

the per

3).   

Equation (4.2) represents the amount of moisture that should be added to the root 

zone for optimum agricultura

formance of the irrigation systems is not 100%.  The method of irrigation (e.g. 

furrow irrigation, sprinkler irrigation, drip irrigation), the irrigation management 

(scheduling of irrigation events), physical properties of the soil and the climatic 
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conditions during an irrigation event prevent the irrigation water to contribute to the 

CUAW completely.  A portion of the irrigation water almost always becomes deep 

percolation or return flow. On the other hand, capturing the irrigation water that does not 

effectively contribute to the CUAW (i.e. losses due to the deep percolation or return flow) 

and re-using it increases the overall performance of the irrigation system.  Therefore, it is 

necessary to take the performance of the irrigation systems into account for the 

computation of the true agricultural water demand.   

To compute the agricultural water demand for a subregion, IWFM uses the 

seasonal crop application efficiencies.  Seasonal crop application efficiency is an 

indicator of the performance of the irrigation system and is defined by the user for each 

crop-subregion combination.  A detailed discussion for this parameter is provided in the 

next section.  Similar to equation (4.3), a crop-area-weighted average seasonal 

application efficiency is computed for each subregion: 

( )( )

( )
i

i

n
t 1 t 1

t 1 i 1
sa,avg n

Eff A
Eff

+ +

+ ==
∑

 
sa,i c

t 1
c

i 1
A +

=
∑

(4.4) 

where 

Effsa,avg  = crop-area-weighted average of seasonal application 

efficiencies for all crops in a subregion, (dimensionless); 

Finally, IWFM uses 

Effsa,i  = seasonal application efficiency for crop i, (dimensionless). 

the subregional t 1
AWCU +  and the average seasonal crop 

applica iencytion effic  to compute the subregional agricultural demand: 
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t 1
t 1 AW

sa,avg

CU
D

+
+ =  (4.5) ag t 1Eff +

where  

Dag  = 

 of whether the agricultural demand is pre-specified or computed, it 

does no n e  or d upply simulated in IWFM.  The 

model 

 section. 

onal Crop Application Efficiency 

easonal crop application efficiency is a measure for the irrigation performance.  

f the ultimate use of the applied 

irrigatio

agricultural water demand, (L/T). 

Regardless

t i cr ase ecrease based on the actual water s

simulates the supply of water available for agricultural demand, and reports any 

shortage or surplus within the domain.  A shortage is reported when the simulated water 

supply, from surface water diversions and pumping, does not meet the agricultural 

demand.  Conversely, a surplus is reported when the simulated water supply exceeds the 

demand. 

A detailed discussion of the seasonal crop application efficiency is given in the 

following

 

4.2.1. Seas

S

Irrigation performance measures are defined in terms o

n water.  Burt, et al. (1997) classify the irrigation water use (e.g. consumptive 

versus non-consumptive, beneficial versus non-beneficial, etc.) and identify several 

irrigation performance measures; namely irrigation consumptive use coefficient, 

irrigation efficiency, irrigation sagacity, distribution uniformity, application efficiency 

and potential application efficiency.  In this document only the irrigation consumptive 
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use coefficient and the irrigation efficiency will be explained as they pertain to the 

implementation of seasonal crop application efficiency in IWFM.  A detailed description 

of all the irrigation performance measures along with the classification of irrigation water 

use (i.e. consumptive – non-consumptive, beneficial – non-beneficial, and reasonable – 

unreasonable uses) can be found in Burt, et al. (1997). 

 

4.2.1.a. Irrigation Consumptive Use Coefficient 

The irrigation consumptive use coefficient is defined as the fraction of the 

(Burt, et al., 1997): irrigation applied water that goes to the consumptive uses 

CICUC
AW

=  (4.6) 

where 

ICUC = 

C = irrigation water that goes to consumptive use, (L/T); 

nds up in the 

atmosphere through evaporation or evapotranspiration, and the water that is held in the 

plant ti

irrigation consumptive use coefficient, (dimensionless); 

AW = irrigation water, (L/T). 

The consumptive use of irrigation water, C, includes the water that e

ssues.  It should be noted that C in equation (4.6) is different than the CUAW in 

equation (4.2) in that C includes consumptive use of non-agricultural plants whereas 

CUAW is strictly the consumptive use of the agricultural plants.  The fraction of the 

irrigation water that goes to consumptive uses is considered to be irrecoverable.  Return 

flows, deep percolation and losses in the conveyance structures of the irrigation system 

are considered to be the part of the irrigation water that goes to non-consumptive uses.  
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Some or the entire non-consumptive portion of the irrigation water may be captured and 

re-used. 

 

4.2.1.b. Irrigation Efficiency 

Irrigation efficiency is defined as the fraction of the applied irrigation water that is 

used beneficially: 

BIE =  (4.7) 
AW

where 

IE = 

B = portion of the applied water that is used beneficially, (L/T). 

sumptive use of agricultural 

crops (i.e. CUA as d

are gen

 (see equation (4.6)) and the beneficial use of irrigation water in terms of tile 

drainag

irrigation efficiency, (dimensionless); 

The beneficial use of irrigation water includes the con

W efined in equation (4.2)), and the tile drainage and return flow that 

erated due to the irrigation water that is applied to remove salts from agricultural 

fields.   

In IWFM, the non-beneficial consumptive use that appear in the expression for 

the ICUC

e and return flow that appear in the definition of IE (see equation (4.7)) are not 

considered.  Therefore, ICUC and IE represent the same irrigation performance measure 

in the context of IWFM (i.e. the fraction of the irrigation water that goes to the beneficial 

consumptive use of harvested plants) and it is referred to as the seasonal crop application 

efficiency to avoid any confusion with ICUC and IE.  Seasonal crop application 

efficiency is a value between 0 (zero) and 1.  At a given time step t, it can be expressed as 
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t
t AW

t
CU
AW

sa,avgEff =  (4.8) 

where 

= crop-area-weighted average seasonal crop application efficiency, 

(dimensionless). 

As stated

acreages both of whic nput parameters in IWFM.  Equation (4.8) reveals 

that the

4.2.2. Re-use of Irrigation Water 

Some or all of the irrigation water that contributes to deep percolation or return 

d re-used (i.e. re-applied) at the same unit or 

at a do

sa,avgEff  

 in equation (4.4), Effsa,avg can be computed based on Effsa,i and crop 

h are time-series i

 application efficiency at a given time step is the ratio of the total irrigation 

amount less system loses (return flow and deep percolation) to the total amount of 

irrigation water.  At a given time step, it is likely that simulated seasonal crop application 

efficiencies computed from equation (4.8) will not be equal to the application efficiencies 

computed from equation (4.4).  However, it is expected that the average of the simulated 

application efficiencies over a long period of time (e.g. over an irrigation season) should 

converge to the values computed based on the user-specified input parameters. 

 

flow can be captured in an irrigation unit an

wnstream unit.  An irrigation unit can be a single farm, a collection of farms such 

as an irrigation district, or a collection of irrigation districts (Solomon and Davidoff, 

1999).  In IWFM, a subregion is considered to be an irrigation unit. 
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Re-use of irrigation water can improve irrigation efficiency (i.e. seasonal crop 

application efficiency as implemented in IWFM) and downstream water quality, reduce 

irrigati

mon and Davidoff, 1999): 

on labor, and conserve soil and nutrient resources.  It also enables irrigators to 

meet surface water discharge restrictions (ASAE, 1999). 

For an irrigation unit, the re-use factor can be expressed as a weighted average of 

the re-used deep percolation and re-used return flow (Solo

p f ,ag

p f ,ag

D R
D R
μ + τ

ρ =
+

 (4.9) 

where 

ρ = irrigation water re-use factor, (dimensionless); 

Dp = deep percolation, (L/T); 

rcolation that is captured and re-used, 

tat rli

To derive the expression for the seasonal crop application efficiency that takes the re-use 

factor i

Rf,ag = return flow, (L/T); 

μ = fraction of the deep pe

(dimensionless); 

τ = fraction of return flow that is captured and re-used, 

(dimensionless). 

As s ed ea er, re-use of irrigation water increases overall irrigation efficiency.  

nto account, one can re-write equation (4.8) as follows: 

AW AW
c c

AW p f ,ag

CU CU
AW CU D R+ +

sa,rEff = =  (4.10) 

where  
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sa,rEff  = seasonal crop application efficiency after re-use of irrigation water, 

(dimensionless); 

c
pD  = hat is not re-used, (L/T); 

= return flow that is not re-used, (L/T). 

The ti step sake of simplicity.  Equation 

(4.10) c

deep percolation t

c
f ,agR  

me index, t, is dropped in (4.10) for the 

an be re-expressed in terms of the re-use factor: 

( )( )
AWCUEff =  sa,r

AW p f ,agCU 1 ρ D R+ − +
(4.11) 

After dividing the numerator and denominator of (4.11) by the total applied water, 

AW, and rearranging, one obtains 

( )
sa,avgEff

=sa,r
sa,avg

Eff
1 ρ 1 Eff− −

 (4.12) 

Equation (4.12) shows the effect of capturing and re-using the losses from 

irrigation water on the seasonal application efficiency.  When there is no re-use, i.e. ρ = 

0, then Effsa,avg and Effsa,r are equal.  Using the seasonal application efficiency after re-use 

in equation (4.5) to express the agricultural water demand, one obtains 

( )
t 1 t 1

t 1 t 1 t 1AW AWCU CU+ +
+ + +

ag sa,avgt 1 t 1
sa,r sa,avg

t 1t 1 sa,avgt 1 t 1AW
AWt 1 t 1

sa,avg sa,avg

D 1 1 Eff
Eff Eff

1 EffCU CU
Eff Eff

+ +

++
+ +

+ +

⎡ ⎤= = −ρ −⎢ ⎥⎣ ⎦

−
= −ρ

 

(4.13)
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Comparing equations (4.5) and (4.13), it can be seen that re-use of irrigation water 

decreases the amount of “prime” water (from groundwater pumping and stream 

diversions) that needs to be applied to the irrigation unit.  In the case of no re-use, i.e. ρ = 

0, equation (4.13) is equivalent to (4.5). 

ρ in equation (4.13) is a time-series input parameter specified for each subregion 

in IWFM.  Treating ρ as a time-dependent parameter allows the modeler to simulate 

changing irrigation systems over the simulation period (e.g. switching from a less re-use 

oriented system to a more re-use oriented one).  In IWFM, only the re-use of return flow 

is considered.  This means that, μ, the fraction of the deep percolation that is captured and 

re-used is assumed to be zero at all times.   

It is important to note that ρ in equation (4.9) represents the fraction of the non-

consumed water that is re-used.  Sometimes, the re-use factors used by irrigation 

practitioners refer to the fraction of total applied water, AW, that is re-used (DWR, 1994; 

Zapata, et al., 2000): 

( ) ( )p f ,ag p f ,ag

AW p f ,ag

ρ D R ρ D R
ρ*

AW CU D R

+ +
= =

+ +
 (4.14) 

In this case a conversion method can be used to convert ρ* into ρ.  Substituting AW – 

CUAW instead of the losses (i.e. p f ,agD R+ ), dividing the numerator and the denominator 

by AW and rearranging, (4.14) becomes 
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( )

( )
( )

AW

AW AW

sa,avg

sa,avg

CUρ 1
AWρ*

CU CU1 ρ 1
AW AW

ρ 1 Eff

1 ρ 1 Eff

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞+ − −⎜ ⎟
⎝ ⎠

−
=

− −

 

(4.15)

 

Equation (4.15) can be re-arranged to express ρ in terms of ρ*: 

( )( )sa,avg

*
1 Eff 1 *

ρ
ρ =

− +ρ
 (4.16) 

In practice it is not always easy to quantify CUAW, deep percolation, return flow 

and actual amount of losses that is re-used.  These values are sometimes grossly 

estimated leading to inconsistent values for seasonal crop application efficiency and re-

use factor.  In such a case, if equation (4.16) is used to convert ρ* into ρ, the following 

inequality should be checked: 

( )sa,avgEff 1 * 1+ρ ≤  (4.17) 

Inequality (4.17) guarantees that when equation (4.16) is used with grossly 

estimated efficiency and re-use factors, ρ will not be computed as a value larger than 1 

violating its physical meaning. 

The flowchart for the computation of agricultural and urban demands at a 

simulation time step in IWFM is given in Figure 4.2.   
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Figure 4.2  Flowchart for the simulation of water demand  
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4.3. Urban Water Demand 

Urban water demand is the specified need for water in municipal and industrial 

areas. The user is required to specify the historical or projected total urban water demand, 

and the fraction to be used as the indoor urban demand.  Like agricultural demand, urban 

water demand is not modified, regardless of shortage or surplus as a result of simulated 

water supply.  If the urban demand exceeds the water supply, a shortage is computed and 

reported.  Similarly, a surplus is computed and reported when the water supply is 

simulated to be greater than the specified demand.  

 

4.4. Supply 

Figure 4.3 illustrates the sources of water supply in IWFM, as well as the 

allocation of water for different uses.  Surface water diversions and groundwater 

pumping are the two processes that define prime water supply.  Re-use of return flow can 

also be considered as a source of water.  The surface water and groundwater supply as 

well as re-used return flow are determined by the simulation of stream flows, 

groundwater flow and return flow of applied water. 

 

4.4.1. Surface Water Diversions and Deliveries  

Each surface water diversion modeled in IWFM is associated with a stream node.  

A surface water diversion can meet one or more deliveries, which may be within the 

same subregion, exported to another subregion, or exported outside the model domain.  

Specified for every diversion is the amount of water used for irrigation purposes and to 



 

Figure 4.3 Water use and supply 
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meet the urban water demand.  IWFM currently computes the actual diversion and 

delivery amounts, and reports any diversion shortages or surplus.  The actual amount of 

water available for delivery is based on the simulated stream flows.   

The conveyance losses for each diversion are specified as a fraction of the total 

diversion.  Recoverable losses are one type of conveyance loss modeled in IWFM.  This 

type of loss is termed “recoverable”, since the water is assumed to eventually percolate to 

the groundwater, and become part of groundwater flow.  A non-recoverable loss is the 

other type of conveyance loss modeled in IWFM.  This water leaves the system through 

evaporation.  Under circumstances where shortages occur, recoverable and non-

recoverable losses are adjusted to reflect the actual amount of water that is diverted.  

Based on the above discussion, applied water to agricultural and urban lands in a 

subregion from diversions are computed in IWFM as 

(
n ns s divdiv div i

s,ag s,ag L L agi i
i 1 i 1 s,ag

Q
AW AW 1 R NR f

A= =

= = − −∑ ∑ )i i  (4.18) 

( )(
n ns s divdiv div i

s,u s,u L L agi i i
i 1 i 1 s,u

Q
AW AW 1 R NR 1 f

A= =

= = − − −∑ ∑ )i  (4.19) 

where 

s = subregion number, (dimensionless); 

ns = total number of diversions that are delivered to subregion s, 

(dimensionless); 

i = index for diversion numbers that deliver water to subregion s, 

(dimensionless); 

As,ag = area of agricultural lands in subregion s, (L2); 
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As,u = area of urban lands in subregion s, (L2); 

div
s,agi

AW  = actual amount of water delivered to agricultural lands in subregion 

s from diversion number i, (L/T); 

div
s,ui

AW  = actual amount of water delivered to urban lands in subregion s 

from diversion number i, (L/T); 

div
s,agAW  = total amount of water delivered to agricultural lands in subregion s 

from surface water diversions, (L/T); 

div
s,uAW  = total amount of water delivered to urban lands in subregion s from 

surface water diversions, (L/T); 

Qdiv = stream diversion that is delivered to subregion s, (L3/T); 

RL = fraction of the stream diversion that becomes recoverable loss, 

(dimensionless); 

NRL = fraction of the stream diversion that becomes non-recoverable loss, 

(dimensionless); 

fag = fraction of the diversion that is delivered to the agricultural lands, 

(dimensionless). 

IWFM has the functionality to model bypass flows, which serves as a method of 

routing flow to avoid flooding.  The model simulates flow through a bypass canal by 

diverting water from a stream node and adding the diverted water to another downstream 

node.  When simulating bypass flows, conveyance losses are accounted for by assigning 

percentages of the bypass flow to recoverable and non-recoverable losses occurring in the 

bypass canal. 
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4.4.2. Groundwater Pumping and Recharge 

IWFM has the functionality to simulate groundwater pumping and recharge by 

well location or on an elemental basis.  Pumping is a source of water supply, whereas 

recharge is the replenishment of water to the aquifer system during model simulation.  

The only difference computationally between pumping and recharge in IWFM is the sign 

convention. 

 

4.4.2.a. Pumping and Recharge at Well Locations 

IWFM has the capability to simulate pumping and recharge from well logs.  

Pumping and recharge from specific well locations require the user to input all simulated 

well locations in (x,y) coordinates.  Based on the well location, IWFM identifies the 

finite element that contains the location of the well and computes the interpolating 

coefficients (refer to section 3.8 for the interpolation method) to distribute the pumping 

amount to the groundwater nodes that correspond with the element.   

Since IWFM has the capability to model multiple layers, the vertical distribution 

of pumping from each layer must be computed.  The vertical distribution of pumping to 

each aquifer layer is proportional to the length of the well screen and the transmissivity of 

the aquifer layer: 

m T L

m m
P P N

i i
i 1

f TQ Q

f T
=

=

∑
 (4.20) 
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where 

mPQ  = pumping from aquifer layer m, (L3/T); 

TPQ  = total pumping at the well, (L3/T); 

f = fraction of vertical distribution for each layer, (dimensionless); 

T = transmissivity, (L2/T); 

NL = total number of aquifer layers, (dimensionless). 

The Kozeny equation is used to define the fraction of vertical distribution, f, which 

accounts for the effect of partial penetration of a well in an aquifer layer (Driscoll, 1986): 

s
m s

s

πrf 1 7 cos
2b 2

⎡ ⎤⎛ ⎞= +⎢ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎥  (4.21) 

where 

fm = fraction of pumping from aquifer layer m, (dimensionless); 

s  = well screen length as a fraction of the aquifer thickness, 

(dimensionless); 

r = well radius, (L); 

b = aquifer thickness, (L). 

 

4.4.2.b. Elemental Distribution of Pumping and Recharge 

It is sometimes impossible to locate every well in the modeled area and access the 

pumping records.  Instead, average values for the pumping or recharge amounts may be 

available for a section of the modeled area.  For this reason, IWFM has the functionality 

to distribute regional pumping/recharge values to elements when they are specified for 
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areas containing well locations that are not defined in terms of specific coordinates.  The 

distribution of pumping to elements can be done in one of the following five ways in 

IWFM: 

(i) Pumping can be distributed based on a factor specified for each element 

associated with the total pumping, PT: 

( )( )e TP PQ Q f= e  (4.22) 

where 

ePQ  = pumping at element e, (L3/T); 

TPQ  = total pumping from an area, (L3/T); 

fe = factor that defines the amount of pumping allocated to element e, 

(dimensionless). 

(ii) The second option when distributing pumping to an element is to define the 

pumping with respect to the area of each element relative to the area that 

corresponds to the total pumping value and a user defined fraction: 

( )

T
e

P i e i e
P n

i i
i 1

Q f A
Q

f A

= =

=

=

×∑
 (4.23) 

where 

fi = fraction that defines the amount of pumping from element i, 

(dimensionless); 

Ai = area of element i, which is also associated with the total pumping 

, (L2); 
TPQ
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n = number of elements that the total pumping,  is distributed to, 

(dimensionless). 

TPQ

(iii) The third option is based on the relative amount of agricultural and urban 

area in an element with respect to the agricultural and urban areas in all other 

elements that the total pumping,  is distributed to: 
TPQ

( )
( )

T
e

P i e i e,ag i e,ur
P n

i i,ag i,ur
i 1

Q f A A
Q

f A A

= = =

=

+
=

⎡ ⎤× +⎣ ⎦∑
 (4.24) 

where 

Ai,ag = agricultural area within element i, (L2); 

Ai,ur = urban area within element i, (L2). 

(iv) The elemental pumping distribution can be computed based on the relative 

amount of agricultural area in an element with respect to the agricultural 

areas in all other elements that are assigned pumping from .   
TPQ

( )
T

e
P i e i e,ag

P n
i i,ag

i 1

Q f A
Q

f A

= =

=

=

×∑
 (4.25) 

(v) The final option to be discussed is the elemental distribution of pumping with 

respect to the relative amount of urban area in an element to the urban areas of 

all other elements that are assigned a portion of the total pumping ( ): 
TPQ

( )
T

e
P i e i e,ur

P n
i i,ur

i 1

Q f A
Q

f A

= =

=

=

×∑
 (4.26) 
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For simplicity, the computations described in equations (4.22) - (4.26) are defined 

in terms of pumping.  However, recharge is computed in the same manner as pumping, 

with the exception of the sign convention. 

Similar to applied water from diversions, pumping is also proportioned between 

the agricultural and urban lands.  Applied water to agricultural and urban lands in a 

subregion from pumping are computed in IWFM as 

s s
i

ii

n n
Ppp

s,ag ags,ag
s,agi 1 i 1

Q
AW AW f

A= =
= =∑ ∑  (4.27) 

(
s s

i
ii

n n
Ppp

s,u ags,u
s,ui 1 i 1

Q
AW AW 1 f

A= =
= = −∑ ∑ )  (4.28) 

where 

s = subregion number, (dimensionless); 

ns = total number of pumping locations that supply water to subregion 

s, (dimensionless); 

i = index for pumping locations that supply water to subregion s, 

(dimensionless); 

As,ag = area of agricultural lands in subregion s, (L2); 

As,u = area of urban lands in subregion s, (L2); 

p
s,agi

AW  = actual amount of water supplied to agricultural lands in subregion s 

from pumping number i, (L/T); 

p
s,ui

AW  = actual amount of water supplied to urban lands in subregion s from 

pumping number i, (L/T); 
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p
s,agAW  = total amount of water supplied to agricultural lands in subregion s 

from pumping, (L/T); 

p
s,uAW  = total amount of water supplied to urban lands in subregion s from 

pumping, (L/T); 

QP = pumping that is supplied to subregion s, (L3/T); 

fag = fraction of the pumping that is supplied to the agricultural lands, 

(dimensionless). 

 

4.4.2.c. Computation of Pumping at Drying Wells 

IWFM strives not only to compute groundwater heads and stream flows 

accurately but also to define the actual amount of water supply that is distributed over the 

model area to meet the water demand.  During pumping, if a well dries during a time step 

the groundwater head will be computed as being less than the elevation of the bottom of 

the deepest aquifer that the well is drilled to.  However, this is not possible since IWFM 

only models the saturated groundwater flow.  Furthermore, it is important to identify the 

exact time that the well dries in order to compute the total amount of water that is 

actually pumped from the well.  In general, this is an inverse problem and it requires the 

solution of the inverse of the groundwater conservation equation.  In order to address 

these two problems, IWFM uses an iterative method.   

If the groundwater head at a node falls below the bottom of the aquifer due to 

pumping during a time step, IWFM enters the mode of iterative inverse-problem solution.  

The estimated pumping is calculated as 
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( ) ( ) ( )
'

i i

i

k kt 1 t 1
k 1 p pt 1

p

Q Q
Q
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+ +
++

+
=  (4.29) 

where 

( )
( ) ( )

( ) ( ) ( ) ( )

i i

ii'

i

i i

ii i

t 1
k k i y it 1 t 1

i kp
kt 1

p
t 1
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⎧
⎪ −⎪ − ≤⎪
⎪

= ⎨
⎪ ⎡ ⎤−⎪ ⎢ ⎥⎪ > <⎢ ⎥⎪ ⎢ ⎥⎣ ⎦⎩
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(4.30) 

i = finite element node at which pumping occurs, (dimensionless); 

( )i

kt 1
pQ +  = pumping rate at node i, at the kth iteration level, (L3/T); 

( )i

k 1t 1
pQ

++  = pumping rate at node i, at the (k+1)th iteration level, (L3/T); 

( )i

reqt 1
pQ +  = required pumping rate at node i specified by the user, (L3/T); 

hi = groundwater head at node i, (L); 

ikz  = elevation of the bottom of the aquifer at node i, (L); 

iyS  = specific yield at node i, (dimensionless); 

Ai = area associated with node i, (L2); 

Δt = length of time step, (T); 

t = index for time step, (dimensionless); 

k = iteration level, (dimensionless). 
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The iteration is stopped when the ratio of the difference between the two pumping 

rates from consecutive iteration levels to the pumping rate at the previous iteration level 

is smaller than a tolerance value: 

( ) ( )
( )

i i

i

k 1 kt 1 t 1
p p

kt 1
p

Q Q
ε

Q

++ +

+

−
≤  (4.31) 

Estimating 
i

t 1
pQ +  iteratively results in a pumping rate that will drawdown the 

groundwater head at a well to the elevation of the bottom of the aquifer.  Once the 

pumping rate is computed, it is multiplied by the time step length, Δt, to compute the 

actual volume of pumping that is supplied to urban and agricultural lands. 

 

4.4.3. Re-use of Irrigation Water 

Re-used irrigation water is another water supply in addition to the prime water 

(i.e. irrigation water before the application of re-used water) that is delivered to the fields 

in terms of groundwater pumping or surface water diversions.  As stated earlier, IWFM 

simulates only the re-use of return flow.  The agricultural return flow computed by 

IWFM is assumed to be the net return flow after the user-specified portion of the initial 

return flow is re-used.  Therefore, once the net return flow is computed the re-used 

amount is back-calculated as 

UR
1 fRρ

=
−ρ

 (4.32) 

Equation (4.32) is used to compute the re-use of applied water in urban lands as 
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well as in agricultural lands. 

 

4.4.4. Agricultural Water Use 

Agricultural water use is the amount of the agricultural water demand that can be 

met by the simulated water supply.  The total rate of water delivered to agricultural lands 

in a subregion from surface water diversions and pumping is 

div p
s,ag s,ag s,agAW AW AW= +  (4.33) 

where  and div
s,agAW p

s,agAW  are given in equations (4.18) and (4.27), respectively.  If the 

simulated supply equals demand, the agricultural water use is simply the demand that is 

specified or computed (refer to section 4.2).  If simulated water supply is less than the 

demand, then water use is equal to the water supply.  On the other hand, if water supply 

is larger than the demand, then water use is equal to the demand and the amount of 

supply in excess of demand contributes to surface runoff, increases the soil moisture in 

the root zone without being used by the plants, or percolates into the unsaturated zone 

and groundwater.  The water supply is delivered to the appropriate locations based on 

input that specifies the fraction of each surface water diversion that is to be used for 

irrigation purposes and the fraction of groundwater pumping to be applied to agricultural 

lands. 

 

4.4.5. Urban Water Use 

The total rate of applied water delivered to the urban areas in a subregion is  
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div p
s,u s,u s,uAW AW AW= +  (4.34) 

where  and div
s,uAW p

s,uAW  are given in equations (4.19) and (4.28), respectively.  

Furthermore, based on the simulated water supply, the amount of water available to each 

subregion for indoor and outdoor urban use can be expressed as 

( )(is,u s,u s,uAW AW %AW= )i

i

 (4.35) 

os,u s,u s,uAW AW AW= −  (4.36) 

where 

s = subregion number, (dimensionless); 

s,ui
AW  = indoor urban water use in subregion s, (L/T); 

s,ui
%AW  = fraction of urban water use specified for indoors in subregion s, 

(dimensionless); 

s,uo
AW  = water applied to outdoor urban areas in subregion s, (L/T). 

If supply equals demand, or the model simulates that the supply meets or exceeds 

the demand, the total urban water use is the demand specified by the user.  However, if 

the simulated water supply is short of meeting the demand, the urban indoor and outdoor 

water use values are computed by equations (4.35) and (4.36) based on the available 

water supply. 

 

4.5. Automated Supply Adjustment 

An important task in water resources planning studies is to find answers to 

questions such as if there is enough water supply in the modeled area to meet the 
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agricultural and urban water demand, and how to operate the pumping and diversion 

facilities in order to minimize the discrepancy between the supply and demand.  In order 

to achieve this task, the functionally to adjust the surface water diversions and/or 

pumping automatically has been included in IWFM. 

The user can choose some or all of the diversions, pumping or both to be adjusted 

by IWFM in order to meet the agricultural and urban water demand, or to minimize the 

surplus supply amounts.  It should be noted at this point that IWFM does not incorporate 

optimization techniques in adjusting the water supply.  Instead, it tries to distribute the 

discrepancy between the supply and demand among adjusted diversions or pumping as 

equally as possible without considering any operation rules.  Thus, the resulting diversion 

and pumping amounts after the adjustment may not be the optimum management of the 

water resources in terms of financial, environmental and legal constraints.  However, 

these results may help the user to identify hot spots of the modeled region such as streams 

and pumping locations that may be utilized when there is a shortage of supply, or 

diversion and pumping locations that constantly fail to produce required amounts of 

water supply. 

In IWFM, the term “adjustment of supply” stands for the procedure of modifying 

the required amount of diversions and pumping to minimize the discrepancy between the 

water demand and water supply to meet this demand.  An adjusted amount of required 

diversion or pumping does not necessarily mean that that much water can actually be 

diverted or pumped.  For instance, in dry years it may not be possible to divert as much 

water as the adjusted amount of required diversions.  Therefore, it is important to 

understand that automated adjustment of diversions and pumping will not always 
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generate a perfect match between the water demand and the actual amount of water 

supplied to meet this demand. 

In the following sections, the methods used in adjusting the surface water 

diversions and pumping are detailed.  If the adjustment of both surface water diversions 

and pumping is desired, then surface water diversions are adjusted first and pumping 

rates are adjusted second. 

 

4.5.1. Adjustment of Surface Water Diversions 

Surface water diversions are adjusted according to their ranks based on the 

number of upstream diversion locations.  Figure 4.4 shows a hypothetical stream system 

with four diversion points.  These diversion points are ranked as follows: 

• Rank 0: Diversions 1 and 2 (0 upstream diversion points); 

• Rank 1: Diversion 3 (1 upstream diversion point, namely diversion 1); 

• Rank 3: Diversion 4 (3 upstream diversion points, namely diversions 1, 2 and 3). 

In the list above, rank 2 is omitted since there are no diversions with two upstream 

diversion locations.  Adjustment of diversions is performed with a multi-step procedure.  

In the first step, all adjustable diversions (the criteria used to specify a diversion as 

adjustable is listed below) of all ranks are adjusted and the required amounts of 

diversions to meet the water demand are computed.  If the newly computed diversion 

requirements can be met, then the adjustment was successful and no further steps are 

performed.  However, if there is still a discrepancy between the actual diversion amounts 

and the water demand, then the second step of adjustment is performed.  In the second 
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Diversion 1
Diversion 2 

Diversion 4

Diversion 3

Figure 4.4  A stream system with 4 diversion locations 

step, all adjustable diversions except those with rank 0 are adjusted.  At the end of this 

step if there are still discrepancies between actual diversions and water demands, then 

IWFM goes to the third step.  In the third step, all adjustable diversions except those with 

ranks 0 and 1 are adjusted.  This procedure is performed until the discrepancies are 

minimized or all ranks of diversions have been adjusted.  As an example, IWFM will 

perform a maximum of three adjustment steps for the hypothetical case shown in Figure 

4.4.  In the first step all diversions will be adjusted.  In the second step diversions 3 and 4, 

and in the third step only diversion 4 will be adjusted. 

As mentioned earlier, agricultural and urban water demands are specified or 

computed for each subregion of the modeled area.  Each diversion is assigned a 

subregion for water delivery, and the amount delivered to a subregion is proportioned 

between urban and agricultural water use based on a fraction specified by the user.  In 

IWFM, each diversion can be adjusted to meet only agricultural demand, only urban 

demand or both.  
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For the simplicity of explanation, only the procedure that is used to adjust 

diversions to meet agricultural water demand will be discussed in the following 

paragraphs.  Adjustment of diversions to meet the urban water demand is exactly the 

same. 

First, the discrepancies between the agricultural water demand and the amount of 

delivery to agricultural lands in a subregion is computed.  If there is a supply shortage, 

i.e. water demand is larger than the actual delivery to the agricultural lands, the total 

number of diversions that can be adjusted is computed.  When computing the total 

number of adjustable diversions, the following criteria are used: (i) diverted water is 

delivered to the subregion in concern, (ii) diversion originates from a stream node that is 

not dry (i.e. diversion amount can be increased), (iii) diversion is specified by the user to 

be adjusted to meet the agricultural water requirement in the subregion and (iv) the rank 

of the diversion is greater than or equal to the adjustment step.  Once the total number of 

adjustable diversions is computed, the new diversion requirements are calculated by 

distributing the supply shortage equally among adjustable diversions that deliver water to 

the specified subregion.  The adjusted delivery amount can be expressed mathematically 

as 

( )
s,ps,div

i j

i i

nn
pdiv

s,ag s,ag s,ag
i 1 j 1div div

s,ag s,agadj sadj

D AW AW

AW AW
n

= =
− −

= +

∑ ∑
 (4.37) 

where 

( )i

div
s,ag adj

AW  = adjusted amount of required delivery to agricultural lands 
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in subregion s from surface water diversions, (L/T); 

nsadj = number of adjustable deliveries to agricultural lands in 

subregion s from diversions, (dimensionless); 

ns,div = number of diversions that deliver water to subregion s, 

(dimensionless); 

ns,p = number of pumping locations that supply water to 

subregion s, (dimensionless); 

Ds,ag = agricultural demand in subregion s as expressed in equation 

(4.13), (L/T). 

Once the adjusted delivery rate to agricultural lands is computed using (4.37), the 

adjusted diversion at the stream node can be computed by calculating the recoverable and 

non-recoverable losses and adding them to the adjusted delivery.  With the adjusted 

diversion requirements, the stream flows are simulated by solving the coupled 

groundwater-surface water equation set.  If the diversion requirements are met, i.e. 

simulated stream flows are large enough to support the required diversion rates, the 

adjustment procedure is aborted.  Otherwise, above procedure is repeated for the next 

adjustment step to adjust the diversions with appropriate ranks. 

Generally, it is not possible to match the water demand with the actual water 

supply perfectly when there is a supply shortage.  For this reason, IWFM allows the user 

to define a tolerance value.  If the ratio of the actual supply to the water demand falls 

below this tolerance value, it is assumed that the supply is satisfactorily close to the water 

demand and the adjustment procedure is aborted. 
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If there is a supply surplus, i.e. water demand is less than the actual delivery to the 

agricultural lands, then it is necessary to decrease the diversion amounts.  In this case, the 

total amount of actual deliveries to the agricultural lands that originate from adjustable 

diversion locations is computed.  The same criteria listed above with the exception of the 

second item are used in specifying a diversion as adjustable.  The second criterion in this 

case is redundant since the diversions will be decreased and a dry stream node does not 

pose a constraint.  Once the total amount of actual deliveries from adjustable diversion 

locations is computed, the required diversion rates are calculated by decreasing each of 

the adjustable diversion rates with respect to the magnitude of the original diversion rate: 

( )
s,ps,div

i i

i i sadj

i

nn
pdiv

s,ag s,ag s,ag
div div i 1 i 1
s,ag s,ag nadj

div
s,ag

i 1

D AW AW
AW AW 1

AW

= =

=

⎛ ⎞
⎜ ⎟− −
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑
 (4.38) 

Expressions similar to (4.37) and (4.38) can be written for the adjusted deliveries 

to urban areas from surface water diversions.  It should be noted that once the deliveries 

to agricultural and urban lands are adjusted, the fraction fag (see equations (4.18) and 

(4.19)) that is used to partition the total delivery between agricultural and urban lands 

also changes. 

 

4.5.2. Adjustment of Pumping 

The adjustment of pumping in order to minimize the discrepancy between the 

water supply and demand is similar to the adjustment of surface water diversions, except 

that pumping wells or elements are not ranked the same as diversion points.  Instead, 
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pumping requirements are adjusted until the ratio between the actual supply and demand 

is smaller than the tolerance specified by the user, or if further adjustment does not 

change the required pumping values.  The latter case can occur when the required 

pumping rates are so high that the wells eventually go dry and actual pumping can not be 

increased any more.  The adjustment can be performed for well pumping as well as 

elemental pumping.  

Equations similar to (4.37) and (4.38) are repeated below for the adjusted 

pumping requirements: 

( )
s,ps,div

i j

i i

nn
pdiv

s,ag s,ag s,ag
i 1 j 1p p

s,ag s,agadj sadj

D AW AW

AW AW
n

= =
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= +

∑ ∑
 (4.39) 
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∑ ∑

∑
 (4.40) 

where 

( )i

p
s,ag adj

AW  = adjusted pumping required to be supplied to agricultural 

lands in subregion s, (L/T); 

nsadj = number of adjustable pumping locations, (dimensionless). 

Equation (4.39) is used when there is a shortage of supply and (4.40) is utilized 

when there is supply surplus.  Similar expressions can be written for the adjusted 

pumping requirements that supply water to urban areas. 
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Appendix A  

A.1. Components of { }kF  and kX⎡ ⎤
⎣ ⎦

 for Stream Nodes 
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If the bypass rate, 
ibQ , is specified as constant, then (A.3) can be expressed as  
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On the other hand, if the bypass rate is specified as a function of stream flow 

through a rating table ( )( )i i
**

b b ii.e. Q Q Q=  then (A.3) is expressed as 
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where Hn is the groundwater head at the finite element node n that corresponds to the 

stream node i, and . LNR NLK 1 NR NLK N N+ + ≤ ≤ + + ⋅n
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A.2. Components of { }kF  and kX⎡ ⎤
⎣ ⎦

 for Lakes 
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In (A.9)-(A.11), Nlk is the number of lake nodes that make up a single lake and 

Alk is the total surface area of a lake. 

♦ 
lk

j

kk t+1k t 1 Nlk i lkintk i
i,i t 1 t 1 t 1

j 1i i

QS1
Δt

+

+ +
=

⎛ ⎞⎛ ⎞⎡ ⎤ ∂∂⎛ ⎞∂ ⎜⎜ ⎟⎣ ⎦= = +⎜ ⎟ ⎜⎜ ⎟⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑
HFX

H H Hi
+

⎟
⎟  (A.12) 

where 

( )lk

j

kt 1 N klk i t 1
i blk lkt 1

j 1i

S
H h

+
+

+
=

⎛ ⎞⎡ ⎤∂ ⎡ ⎤⎜ ⎟⎣ ⎦ = −⎢⎜ ⎟∂ ⎣ ⎦⎜ ⎟
⎝ ⎠

∑
H

H
H j

A⎥  (A.13) 

 A-4



( )

( )

j j
j

j

kt 1k lk i blkt+1
lkint

t 1
i kt 1

i b

C if h
Q

0 if h

+

+

+

⎧
≥⎪⎛ ⎞∂ ⎪⎜ ⎟ = ⎨⎜ ⎟∂ ⎪⎜ ⎟

⎝ ⎠ ⎪ <
⎩

H

H
H lk

 (A.14) 

and [ ]H •  is the Heaviside function. 
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where Hn is the groundwater head at finite element node n that corresponds to lake 

node j. 
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In (A.16)-(A.20) ns is the stream node number that corresponds to groundwater 

node number i , lk is the lake number plus the total stream nodes 

, and nlk is the lake node number that corresponds to 

groundwater node number i. 
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Appendix B - Chronology of the Development of IGSM, IGSM2, 

and IWFM 

The roots of the IGSM code date back to an earlier code called FEGW2, 

developed by Dr. Young Yoon at UCLA in 1976.  The first version of IGSM was also 

developed by Dr. Yoon (and his consulting staff) in 1990 as part of a contract funded by 

the Bureau of Reclamation Mid Pacific Region (MP), California Department of Water 

Resources (DWR), State Water Resources Control Board (SWRCB), and Contra Costa 

Water District (CCWD) (James M. Montgomery Consul. Eng. Inc., 1990). 

Over the years, IGSM has undergone various upgrades by different groups based 

on specific applications to numerous basins in the United States (Table B.1); the model 

has been applied to groundwater basins in California, Colorado, and Florida.  

Applications of IGSM in California include the Central Valley, Sacramento County, 

Pajaro Valley, Friant Service Area, Alameda County, City of Sacramento, Pomona 

Valley, Salinas Valley, and the Chino Basin (Montgomery Watson, 1993). 

No formalized version numbering system for IGSM was created until IGSM 

Version 3.0 in 1996.  As a result, IGSM codes were not referenced in terms of a version 

number prior to 1996 (WRIME, 2000). 

Thereafter, two separate groups developed IGSM versions 3.1 and 4.0 for 

application in the CVPIA-PEIS and Salinas Valley projects, respectively.  However, not 

all the features developed for version 3.1 were included in version 4.0.  The development 

of IGSM 5.0 in 2000 was an effort to consolidate all the features from both version 3.1 

and 4.18 into a one comprehensive and upgraded IGSM version (Technical Memorandum 
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IGSM 5.0, 2000).  Around that time, an IGSM User’s Group was developed to discuss 

and share input, recommendations, and experiences of the IGSM users in the water 

community.  Following the Peer Review process of IGSM conducted by the California 

Water and Environmental Modeling Forum, CWEMF (previously known as the Bay-

Delta Modeling Forum, BDMF), the members of the IGSM Users Group strongly urged 

DWR to take the lead in overseeing the future development and technical support of 

IGSM.  DWR has a strong interest in IGSM because of the use of the application of 

IGSM to the Central Valley in California CVGSM (Central Valley Groundwater and 

Surface water Model) in supporting the hydrology development and groundwater 

simulation in the CVP/SWP simulation model CalSim (previously known as DWRSIM). 

DWR initiated a comprehensive review of the IGSM version 5.0 theories and 

code in January 2001.  Following extensive revisions and enhancements to the theoretical 

basis of many of the processes simulated in IGSM and to the FORTRAN codes, it was 

decided to call the newly developed model IGSM2.  The basic acronym was retained 

since to the end user many of the features between IGSM and IGSM2 were very similar.  

IGSM2 Version 1.0 was made available to the public in December 2002.  Effective 

September 2005, IWFM was the new name for IGSM2.  IWFM Version 2.4 was released 

in May 2006, while Version 3.0 was released in February 2007. 
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